Tighter bounds for the inequalities of Sinc function based on reparameterization

In this article, a new refined inequality containing trigonometric function for sinc function is established, which is based on the reparameterization technique. It utilizes the help of computer for proving the main results. It also provides two-sided bounds of sin ( x ) x λ for the cases that λ ∈ (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 29
Hauptverfasser: Qian, Cheng, Chen, Xiao-Diao, Malesevic, Branko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 116
creator Qian, Cheng
Chen, Xiao-Diao
Malesevic, Branko
description In this article, a new refined inequality containing trigonometric function for sinc function is established, which is based on the reparameterization technique. It utilizes the help of computer for proving the main results. It also provides two-sided bounds of sin ( x ) x λ for the cases that λ ∈ ( 1 , 4 ) , which makes up for the leak that there is no two-sided bounds of sin ( x ) x λ for the cases that λ ∈ 7 5 , 3 - π 2 . Numerical examples show that the new results achieves much tighter bounds than those of prevailing methods for sinc function.
doi_str_mv 10.1007/s13398-021-01170-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586501731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586501731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-62f167fe22b7a28ac85d9353ffcb04f2337c919fb97fd805b400caaac37a49dc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwFPAc3SSbJrNUYr_oKBgPYdsNmlT2myb7B7005t2BW_OZR7Me2_gh9ANhTsKIO8z5VzVBBglQKkEos7QhAqpCBUgzk-6JpIDv0TTnDdQhtOqBjlB78uwWvcu4aYbYpux7xLu1w6H6A6D2YY-uIw7jz9CtNgP0fahi7gx2bW4iOT2JpmdKw3h2xxv1-jCm2120999hT6fHpfzF7J4e36dPyyI5VT1ZMY8nUnvGGukYbWxtWgVF9x720DlGefSKqp8o6RvaxBNBWCNMZZLU6nW8it0O_buU3cYXO71phtSLC81E_VMAJWcFhcbXTZ1OSfn9T6FnUlfmoI-wtMjPF3g6RM8rUqIj6FczHHl0l_1P6kfyRpyhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586501731</pqid></control><display><type>article</type><title>Tighter bounds for the inequalities of Sinc function based on reparameterization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qian, Cheng ; Chen, Xiao-Diao ; Malesevic, Branko</creator><creatorcontrib>Qian, Cheng ; Chen, Xiao-Diao ; Malesevic, Branko</creatorcontrib><description>In this article, a new refined inequality containing trigonometric function for sinc function is established, which is based on the reparameterization technique. It utilizes the help of computer for proving the main results. It also provides two-sided bounds of sin ( x ) x λ for the cases that λ ∈ ( 1 , 4 ) , which makes up for the leak that there is no two-sided bounds of sin ( x ) x λ for the cases that λ ∈ 7 5 , 3 - π 2 . Numerical examples show that the new results achieves much tighter bounds than those of prevailing methods for sinc function.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-021-01170-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Theoretical ; Trigonometric functions</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 29</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021</rights><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-62f167fe22b7a28ac85d9353ffcb04f2337c919fb97fd805b400caaac37a49dc3</citedby><cites>FETCH-LOGICAL-c319t-62f167fe22b7a28ac85d9353ffcb04f2337c919fb97fd805b400caaac37a49dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-021-01170-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-021-01170-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Qian, Cheng</creatorcontrib><creatorcontrib>Chen, Xiao-Diao</creatorcontrib><creatorcontrib>Malesevic, Branko</creatorcontrib><title>Tighter bounds for the inequalities of Sinc function based on reparameterization</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>In this article, a new refined inequality containing trigonometric function for sinc function is established, which is based on the reparameterization technique. It utilizes the help of computer for proving the main results. It also provides two-sided bounds of sin ( x ) x λ for the cases that λ ∈ ( 1 , 4 ) , which makes up for the leak that there is no two-sided bounds of sin ( x ) x λ for the cases that λ ∈ 7 5 , 3 - π 2 . Numerical examples show that the new results achieves much tighter bounds than those of prevailing methods for sinc function.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Theoretical</subject><subject>Trigonometric functions</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWLRfwFPAc3SSbJrNUYr_oKBgPYdsNmlT2myb7B7005t2BW_OZR7Me2_gh9ANhTsKIO8z5VzVBBglQKkEos7QhAqpCBUgzk-6JpIDv0TTnDdQhtOqBjlB78uwWvcu4aYbYpux7xLu1w6H6A6D2YY-uIw7jz9CtNgP0fahi7gx2bW4iOT2JpmdKw3h2xxv1-jCm2120999hT6fHpfzF7J4e36dPyyI5VT1ZMY8nUnvGGukYbWxtWgVF9x720DlGefSKqp8o6RvaxBNBWCNMZZLU6nW8it0O_buU3cYXO71phtSLC81E_VMAJWcFhcbXTZ1OSfn9T6FnUlfmoI-wtMjPF3g6RM8rUqIj6FczHHl0l_1P6kfyRpyhw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qian, Cheng</creator><creator>Chen, Xiao-Diao</creator><creator>Malesevic, Branko</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2022</creationdate><title>Tighter bounds for the inequalities of Sinc function based on reparameterization</title><author>Qian, Cheng ; Chen, Xiao-Diao ; Malesevic, Branko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-62f167fe22b7a28ac85d9353ffcb04f2337c919fb97fd805b400caaac37a49dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Theoretical</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Cheng</creatorcontrib><creatorcontrib>Chen, Xiao-Diao</creatorcontrib><creatorcontrib>Malesevic, Branko</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Cheng</au><au>Chen, Xiao-Diao</au><au>Malesevic, Branko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tighter bounds for the inequalities of Sinc function based on reparameterization</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2022</date><risdate>2022</risdate><volume>116</volume><issue>1</issue><artnum>29</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In this article, a new refined inequality containing trigonometric function for sinc function is established, which is based on the reparameterization technique. It utilizes the help of computer for proving the main results. It also provides two-sided bounds of sin ( x ) x λ for the cases that λ ∈ ( 1 , 4 ) , which makes up for the leak that there is no two-sided bounds of sin ( x ) x λ for the cases that λ ∈ 7 5 , 3 - π 2 . Numerical examples show that the new results achieves much tighter bounds than those of prevailing methods for sinc function.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-021-01170-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 29
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2586501731
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Theoretical
Trigonometric functions
title Tighter bounds for the inequalities of Sinc function based on reparameterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tighter%20bounds%20for%20the%20inequalities%20of%20Sinc%20function%20based%20on%20reparameterization&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Qian,%20Cheng&rft.date=2022&rft.volume=116&rft.issue=1&rft.artnum=29&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-021-01170-9&rft_dat=%3Cproquest_cross%3E2586501731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586501731&rft_id=info:pmid/&rfr_iscdi=true