Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment
In the present Noisy Intermediate-Scale Quantum (NISQ), hybrid algorithms that leverage classical resources to reduce quantum costs are particularly appealing. We formulate and apply such a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment, which aims t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Koretsky, Samantha Gokhale, Pranav Baker, Jonathan M Viszlai, Joshua Zheng, Honghao Gurung, Niroj Burg, Ryan Paaso, Esa Aleksi Amin Khodaei Rozhin Eskandarpour Chong, Frederic T |
description | In the present Noisy Intermediate-Scale Quantum (NISQ), hybrid algorithms that leverage classical resources to reduce quantum costs are particularly appealing. We formulate and apply such a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment, which aims to satisfy a target power load at minimal cost. Our algorithm extends the Quantum Approximation Optimization Algorithm (QAOA) with a classical minimizer in order to support mixed binary optimization. Using Qiskit, we simulate results for sample systems to validate the effectiveness of our approach. We also compare to purely classical methods. Our results indicate that classical solvers are effective for our simulated Unit Commitment instances with fewer than 400 power generation units. However, for larger problem instances, the classical solvers either scale exponentially in runtime or must resort to coarse approximations. Potential quantum advantage would require problem instances at this scale, with several hundred units. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2586220663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586220663</sourcerecordid><originalsourceid>FETCH-proquest_journals_25862206633</originalsourceid><addsrcrecordid>eNqNjNEKgjAYRkcQJOU7DLqpC8H-5fJ2SNGdCXUtg9QmbrPtH0RPn1AP0NXh43ycGYmAsV2S7wEWJPa-T9MU-AGyjEXkIu5yRGU6WgVpMGgqxtHZl9ISlTW0nKRW7-8QQ2edwoemm0qUYktb6-jNKKSF1VqhbgyuyLyVg2_iH5dkfTpei3MyVZ-h8Vj3NjgzqRqynAOknDP23-sDYBs-yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586220663</pqid></control><display><type>article</type><title>Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment</title><source>Ejournal Publishers (free content)</source><creator>Koretsky, Samantha ; Gokhale, Pranav ; Baker, Jonathan M ; Viszlai, Joshua ; Zheng, Honghao ; Gurung, Niroj ; Burg, Ryan ; Paaso, Esa Aleksi ; Amin Khodaei ; Rozhin Eskandarpour ; Chong, Frederic T</creator><creatorcontrib>Koretsky, Samantha ; Gokhale, Pranav ; Baker, Jonathan M ; Viszlai, Joshua ; Zheng, Honghao ; Gurung, Niroj ; Burg, Ryan ; Paaso, Esa Aleksi ; Amin Khodaei ; Rozhin Eskandarpour ; Chong, Frederic T</creatorcontrib><description>In the present Noisy Intermediate-Scale Quantum (NISQ), hybrid algorithms that leverage classical resources to reduce quantum costs are particularly appealing. We formulate and apply such a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment, which aims to satisfy a target power load at minimal cost. Our algorithm extends the Quantum Approximation Optimization Algorithm (QAOA) with a classical minimizer in order to support mixed binary optimization. Using Qiskit, we simulate results for sample systems to validate the effectiveness of our approach. We also compare to purely classical methods. Our results indicate that classical solvers are effective for our simulated Unit Commitment instances with fewer than 400 power generation units. However, for larger problem instances, the classical solvers either scale exponentially in runtime or must resort to coarse approximations. Potential quantum advantage would require problem instances at this scale, with several hundred units.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Mathematical analysis ; Optimization ; Optimization algorithms ; Solvers ; System effectiveness ; Unit commitment</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Koretsky, Samantha</creatorcontrib><creatorcontrib>Gokhale, Pranav</creatorcontrib><creatorcontrib>Baker, Jonathan M</creatorcontrib><creatorcontrib>Viszlai, Joshua</creatorcontrib><creatorcontrib>Zheng, Honghao</creatorcontrib><creatorcontrib>Gurung, Niroj</creatorcontrib><creatorcontrib>Burg, Ryan</creatorcontrib><creatorcontrib>Paaso, Esa Aleksi</creatorcontrib><creatorcontrib>Amin Khodaei</creatorcontrib><creatorcontrib>Rozhin Eskandarpour</creatorcontrib><creatorcontrib>Chong, Frederic T</creatorcontrib><title>Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment</title><title>arXiv.org</title><description>In the present Noisy Intermediate-Scale Quantum (NISQ), hybrid algorithms that leverage classical resources to reduce quantum costs are particularly appealing. We formulate and apply such a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment, which aims to satisfy a target power load at minimal cost. Our algorithm extends the Quantum Approximation Optimization Algorithm (QAOA) with a classical minimizer in order to support mixed binary optimization. Using Qiskit, we simulate results for sample systems to validate the effectiveness of our approach. We also compare to purely classical methods. Our results indicate that classical solvers are effective for our simulated Unit Commitment instances with fewer than 400 power generation units. However, for larger problem instances, the classical solvers either scale exponentially in runtime or must resort to coarse approximations. Potential quantum advantage would require problem instances at this scale, with several hundred units.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Solvers</subject><subject>System effectiveness</subject><subject>Unit commitment</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjNEKgjAYRkcQJOU7DLqpC8H-5fJ2SNGdCXUtg9QmbrPtH0RPn1AP0NXh43ycGYmAsV2S7wEWJPa-T9MU-AGyjEXkIu5yRGU6WgVpMGgqxtHZl9ISlTW0nKRW7-8QQ2edwoemm0qUYktb6-jNKKSF1VqhbgyuyLyVg2_iH5dkfTpei3MyVZ-h8Vj3NjgzqRqynAOknDP23-sDYBs-yA</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Koretsky, Samantha</creator><creator>Gokhale, Pranav</creator><creator>Baker, Jonathan M</creator><creator>Viszlai, Joshua</creator><creator>Zheng, Honghao</creator><creator>Gurung, Niroj</creator><creator>Burg, Ryan</creator><creator>Paaso, Esa Aleksi</creator><creator>Amin Khodaei</creator><creator>Rozhin Eskandarpour</creator><creator>Chong, Frederic T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211025</creationdate><title>Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment</title><author>Koretsky, Samantha ; Gokhale, Pranav ; Baker, Jonathan M ; Viszlai, Joshua ; Zheng, Honghao ; Gurung, Niroj ; Burg, Ryan ; Paaso, Esa Aleksi ; Amin Khodaei ; Rozhin Eskandarpour ; Chong, Frederic T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25862206633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Solvers</topic><topic>System effectiveness</topic><topic>Unit commitment</topic><toplevel>online_resources</toplevel><creatorcontrib>Koretsky, Samantha</creatorcontrib><creatorcontrib>Gokhale, Pranav</creatorcontrib><creatorcontrib>Baker, Jonathan M</creatorcontrib><creatorcontrib>Viszlai, Joshua</creatorcontrib><creatorcontrib>Zheng, Honghao</creatorcontrib><creatorcontrib>Gurung, Niroj</creatorcontrib><creatorcontrib>Burg, Ryan</creatorcontrib><creatorcontrib>Paaso, Esa Aleksi</creatorcontrib><creatorcontrib>Amin Khodaei</creatorcontrib><creatorcontrib>Rozhin Eskandarpour</creatorcontrib><creatorcontrib>Chong, Frederic T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koretsky, Samantha</au><au>Gokhale, Pranav</au><au>Baker, Jonathan M</au><au>Viszlai, Joshua</au><au>Zheng, Honghao</au><au>Gurung, Niroj</au><au>Burg, Ryan</au><au>Paaso, Esa Aleksi</au><au>Amin Khodaei</au><au>Rozhin Eskandarpour</au><au>Chong, Frederic T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment</atitle><jtitle>arXiv.org</jtitle><date>2021-10-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In the present Noisy Intermediate-Scale Quantum (NISQ), hybrid algorithms that leverage classical resources to reduce quantum costs are particularly appealing. We formulate and apply such a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment, which aims to satisfy a target power load at minimal cost. Our algorithm extends the Quantum Approximation Optimization Algorithm (QAOA) with a classical minimizer in order to support mixed binary optimization. Using Qiskit, we simulate results for sample systems to validate the effectiveness of our approach. We also compare to purely classical methods. Our results indicate that classical solvers are effective for our simulated Unit Commitment instances with fewer than 400 power generation units. However, for larger problem instances, the classical solvers either scale exponentially in runtime or must resort to coarse approximations. Potential quantum advantage would require problem instances at this scale, with several hundred units.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2586220663 |
source | Ejournal Publishers (free content) |
subjects | Algorithms Approximation Mathematical analysis Optimization Optimization algorithms Solvers System effectiveness Unit commitment |
title | Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adapting%20Quantum%20Approximation%20Optimization%20Algorithm%20(QAOA)%20for%20Unit%20Commitment&rft.jtitle=arXiv.org&rft.au=Koretsky,%20Samantha&rft.date=2021-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2586220663%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586220663&rft_id=info:pmid/&rfr_iscdi=true |