Positive matching decompositions of graphs

A matching \(M\) in a graph \(\Gamma\) is positive if \(\Gamma\) has a vertex-labeling such that \(M\) coincides with the set of edges with positive weights. A positive matching decomposition (pmd) of \(\Gamma\) is an edge-partition \(M_1,\ldots,M_p\) of \(\Gamma\) such that \(M_i\) is a positive ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Mohammad Farrokhi Derakhshandeh Ghouchan, Gharakhloo, Shekoofeh, Ali Akbar Yazdan Pour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mohammad Farrokhi Derakhshandeh Ghouchan
Gharakhloo, Shekoofeh
Ali Akbar Yazdan Pour
description A matching \(M\) in a graph \(\Gamma\) is positive if \(\Gamma\) has a vertex-labeling such that \(M\) coincides with the set of edges with positive weights. A positive matching decomposition (pmd) of \(\Gamma\) is an edge-partition \(M_1,\ldots,M_p\) of \(\Gamma\) such that \(M_i\) is a positive matching in \(\Gamma-M_1\cup\cdots\cup M_{i-1}\), for \(i=1,\ldots,p\). The pmds of graphs are used to study algebraic properties of the Lov\'{a}sz-Saks-Schrijver ideals arising from orthogonal representations of graphs. We give a characterization of pmds of graphs in terms of alternating closed walks and apply it to study pmds of various classes of graphs including complete multipartite graphs, (regular) bipartite graphs, cacti, generalized Petersen graphs, etc. We further show that computation of pmds of a graph can be reduced to that of its maximum pendant-free subgraph.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2586209650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586209650</sourcerecordid><originalsourceid>FETCH-proquest_journals_25862096503</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCsgvzizJLEtVyE0sSc7IzEtXSElNzs8tAAvn5xUr5KcppBclFmQU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGphZmRgaWZqYExcaoAVk8xbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586209650</pqid></control><display><type>article</type><title>Positive matching decompositions of graphs</title><source>Free E- Journals</source><creator>Mohammad Farrokhi Derakhshandeh Ghouchan ; Gharakhloo, Shekoofeh ; Ali Akbar Yazdan Pour</creator><creatorcontrib>Mohammad Farrokhi Derakhshandeh Ghouchan ; Gharakhloo, Shekoofeh ; Ali Akbar Yazdan Pour</creatorcontrib><description>A matching \(M\) in a graph \(\Gamma\) is positive if \(\Gamma\) has a vertex-labeling such that \(M\) coincides with the set of edges with positive weights. A positive matching decomposition (pmd) of \(\Gamma\) is an edge-partition \(M_1,\ldots,M_p\) of \(\Gamma\) such that \(M_i\) is a positive matching in \(\Gamma-M_1\cup\cdots\cup M_{i-1}\), for \(i=1,\ldots,p\). The pmds of graphs are used to study algebraic properties of the Lov\'{a}sz-Saks-Schrijver ideals arising from orthogonal representations of graphs. We give a characterization of pmds of graphs in terms of alternating closed walks and apply it to study pmds of various classes of graphs including complete multipartite graphs, (regular) bipartite graphs, cacti, generalized Petersen graphs, etc. We further show that computation of pmds of a graph can be reduced to that of its maximum pendant-free subgraph.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cacti ; Decomposition ; Graph matching ; Graph theory ; Graphical representations ; Graphs</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohammad Farrokhi Derakhshandeh Ghouchan</creatorcontrib><creatorcontrib>Gharakhloo, Shekoofeh</creatorcontrib><creatorcontrib>Ali Akbar Yazdan Pour</creatorcontrib><title>Positive matching decompositions of graphs</title><title>arXiv.org</title><description>A matching \(M\) in a graph \(\Gamma\) is positive if \(\Gamma\) has a vertex-labeling such that \(M\) coincides with the set of edges with positive weights. A positive matching decomposition (pmd) of \(\Gamma\) is an edge-partition \(M_1,\ldots,M_p\) of \(\Gamma\) such that \(M_i\) is a positive matching in \(\Gamma-M_1\cup\cdots\cup M_{i-1}\), for \(i=1,\ldots,p\). The pmds of graphs are used to study algebraic properties of the Lov\'{a}sz-Saks-Schrijver ideals arising from orthogonal representations of graphs. We give a characterization of pmds of graphs in terms of alternating closed walks and apply it to study pmds of various classes of graphs including complete multipartite graphs, (regular) bipartite graphs, cacti, generalized Petersen graphs, etc. We further show that computation of pmds of a graph can be reduced to that of its maximum pendant-free subgraph.</description><subject>Cacti</subject><subject>Decomposition</subject><subject>Graph matching</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCsgvzizJLEtVyE0sSc7IzEtXSElNzs8tAAvn5xUr5KcppBclFmQU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGphZmRgaWZqYExcaoAVk8xbQ</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>Mohammad Farrokhi Derakhshandeh Ghouchan</creator><creator>Gharakhloo, Shekoofeh</creator><creator>Ali Akbar Yazdan Pour</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220921</creationdate><title>Positive matching decompositions of graphs</title><author>Mohammad Farrokhi Derakhshandeh Ghouchan ; Gharakhloo, Shekoofeh ; Ali Akbar Yazdan Pour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25862096503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cacti</topic><topic>Decomposition</topic><topic>Graph matching</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammad Farrokhi Derakhshandeh Ghouchan</creatorcontrib><creatorcontrib>Gharakhloo, Shekoofeh</creatorcontrib><creatorcontrib>Ali Akbar Yazdan Pour</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad Farrokhi Derakhshandeh Ghouchan</au><au>Gharakhloo, Shekoofeh</au><au>Ali Akbar Yazdan Pour</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Positive matching decompositions of graphs</atitle><jtitle>arXiv.org</jtitle><date>2022-09-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A matching \(M\) in a graph \(\Gamma\) is positive if \(\Gamma\) has a vertex-labeling such that \(M\) coincides with the set of edges with positive weights. A positive matching decomposition (pmd) of \(\Gamma\) is an edge-partition \(M_1,\ldots,M_p\) of \(\Gamma\) such that \(M_i\) is a positive matching in \(\Gamma-M_1\cup\cdots\cup M_{i-1}\), for \(i=1,\ldots,p\). The pmds of graphs are used to study algebraic properties of the Lov\'{a}sz-Saks-Schrijver ideals arising from orthogonal representations of graphs. We give a characterization of pmds of graphs in terms of alternating closed walks and apply it to study pmds of various classes of graphs including complete multipartite graphs, (regular) bipartite graphs, cacti, generalized Petersen graphs, etc. We further show that computation of pmds of a graph can be reduced to that of its maximum pendant-free subgraph.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2586209650
source Free E- Journals
subjects Cacti
Decomposition
Graph matching
Graph theory
Graphical representations
Graphs
title Positive matching decompositions of graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Positive%20matching%20decompositions%20of%20graphs&rft.jtitle=arXiv.org&rft.au=Mohammad%20Farrokhi%20Derakhshandeh%20Ghouchan&rft.date=2022-09-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2586209650%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586209650&rft_id=info:pmid/&rfr_iscdi=true