Reconstructing Pruned Filters using Cheap Spatial Transformations
We present an efficient alternative to the convolutional layer using cheap spatial transformations. This construction exploits an inherent spatial redundancy of the learned convolutional filters to enable a much greater parameter efficiency, while maintaining the top-end accuracy of their dense coun...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!