Reconstructing Pruned Filters using Cheap Spatial Transformations
We present an efficient alternative to the convolutional layer using cheap spatial transformations. This construction exploits an inherent spatial redundancy of the learned convolutional filters to enable a much greater parameter efficiency, while maintaining the top-end accuracy of their dense coun...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Miles, Roy Mikolajczyk, Krystian |
description | We present an efficient alternative to the convolutional layer using cheap spatial transformations. This construction exploits an inherent spatial redundancy of the learned convolutional filters to enable a much greater parameter efficiency, while maintaining the top-end accuracy of their dense counter-parts. Training these networks is modelled as a generalised pruning problem, whereby the pruned filters are replaced with cheap transformations from the set of non-pruned filters. We provide an efficient implementation of the proposed layer, followed by two natural extensions to avoid excessive feature compression and to improve the expressivity of the transformed features. We show that these networks can achieve comparable or improved performance to state-of-the-art pruning models across both the CIFAR-10 and ImageNet-1K datasets. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2586208555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586208555</sourcerecordid><originalsourceid>FETCH-proquest_journals_25862085553</originalsourceid><addsrcrecordid>eNqNjUEKwjAURIMgWLR3CLguxB9Ts5VicSnafQk11Zaa1P-T-xvBA7gaZt4Ms2AZSLkr9B5gxXKiUQgB5QGUkhk7Xm3nHQWMXRjcg18wOnvn9TAFi8QjfcPqac3Mb7MJg5l4g8ZR7_GVbJpu2LI3E9n8p2u2rU9NdS5m9O9oKbSjj-gSakHpEoRW6fm_1gfM6joi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586208555</pqid></control><display><type>article</type><title>Reconstructing Pruned Filters using Cheap Spatial Transformations</title><source>Free E- Journals</source><creator>Miles, Roy ; Mikolajczyk, Krystian</creator><creatorcontrib>Miles, Roy ; Mikolajczyk, Krystian</creatorcontrib><description>We present an efficient alternative to the convolutional layer using cheap spatial transformations. This construction exploits an inherent spatial redundancy of the learned convolutional filters to enable a much greater parameter efficiency, while maintaining the top-end accuracy of their dense counter-parts. Training these networks is modelled as a generalised pruning problem, whereby the pruned filters are replaced with cheap transformations from the set of non-pruned filters. We provide an efficient implementation of the proposed layer, followed by two natural extensions to avoid excessive feature compression and to improve the expressivity of the transformed features. We show that these networks can achieve comparable or improved performance to state-of-the-art pruning models across both the CIFAR-10 and ImageNet-1K datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distillation ; Network latency ; Redundancy ; Training</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Miles, Roy</creatorcontrib><creatorcontrib>Mikolajczyk, Krystian</creatorcontrib><title>Reconstructing Pruned Filters using Cheap Spatial Transformations</title><title>arXiv.org</title><description>We present an efficient alternative to the convolutional layer using cheap spatial transformations. This construction exploits an inherent spatial redundancy of the learned convolutional filters to enable a much greater parameter efficiency, while maintaining the top-end accuracy of their dense counter-parts. Training these networks is modelled as a generalised pruning problem, whereby the pruned filters are replaced with cheap transformations from the set of non-pruned filters. We provide an efficient implementation of the proposed layer, followed by two natural extensions to avoid excessive feature compression and to improve the expressivity of the transformed features. We show that these networks can achieve comparable or improved performance to state-of-the-art pruning models across both the CIFAR-10 and ImageNet-1K datasets.</description><subject>Distillation</subject><subject>Network latency</subject><subject>Redundancy</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUEKwjAURIMgWLR3CLguxB9Ts5VicSnafQk11Zaa1P-T-xvBA7gaZt4Ms2AZSLkr9B5gxXKiUQgB5QGUkhk7Xm3nHQWMXRjcg18wOnvn9TAFi8QjfcPqac3Mb7MJg5l4g8ZR7_GVbJpu2LI3E9n8p2u2rU9NdS5m9O9oKbSjj-gSakHpEoRW6fm_1gfM6joi</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Miles, Roy</creator><creator>Mikolajczyk, Krystian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230824</creationdate><title>Reconstructing Pruned Filters using Cheap Spatial Transformations</title><author>Miles, Roy ; Mikolajczyk, Krystian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25862085553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Distillation</topic><topic>Network latency</topic><topic>Redundancy</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Miles, Roy</creatorcontrib><creatorcontrib>Mikolajczyk, Krystian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miles, Roy</au><au>Mikolajczyk, Krystian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reconstructing Pruned Filters using Cheap Spatial Transformations</atitle><jtitle>arXiv.org</jtitle><date>2023-08-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present an efficient alternative to the convolutional layer using cheap spatial transformations. This construction exploits an inherent spatial redundancy of the learned convolutional filters to enable a much greater parameter efficiency, while maintaining the top-end accuracy of their dense counter-parts. Training these networks is modelled as a generalised pruning problem, whereby the pruned filters are replaced with cheap transformations from the set of non-pruned filters. We provide an efficient implementation of the proposed layer, followed by two natural extensions to avoid excessive feature compression and to improve the expressivity of the transformed features. We show that these networks can achieve comparable or improved performance to state-of-the-art pruning models across both the CIFAR-10 and ImageNet-1K datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2586208555 |
source | Free E- Journals |
subjects | Distillation Network latency Redundancy Training |
title | Reconstructing Pruned Filters using Cheap Spatial Transformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reconstructing%20Pruned%20Filters%20using%20Cheap%20Spatial%20Transformations&rft.jtitle=arXiv.org&rft.au=Miles,%20Roy&rft.date=2023-08-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2586208555%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586208555&rft_id=info:pmid/&rfr_iscdi=true |