Particle-laden gravity currents interacting with stratified ambient water using direct numerical simulations
Particle-laden gravity currents propagating in stratified environments, such as turbidity currents induced by floods in estuaries or triggered by landslides in oceans, are important and complicated geophysical processes that require multidisciplinary studies. This paper numerically investigates the...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2021-11, Vol.80 (21), Article 732 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Environmental earth sciences |
container_volume | 80 |
creator | He, Zhiguo Zhao, Liang Chen, Jingyao Yu, Ching-Hao Meiburg, Eckart |
description | Particle-laden gravity currents propagating in stratified environments, such as turbidity currents induced by floods in estuaries or triggered by landslides in oceans, are important and complicated geophysical processes that require multidisciplinary studies. This paper numerically investigates the dynamic features of lock-release particle-laden gravity currents in linear stratification on a flat bed, with the main focus on the front velocity, entrainment ratio, and energy budget. The direct numerical simulations reveal that the suppressive effect of the ambient stratification on the turbulence may cause a particle-laden current to quickly lose momentum so that the near-constant front velocity of the particle-laden current cannot be maintained if no more particles are resuspended. After the acceleration stage, the entrainment ratio of a particle-laden gravity current barely changes with ambient stratification due to a combined effect from suppressed turbulent structures and deposition of particles. The energy-conversion process is accelerated by particle settling and is suppressed by ambient stratification. Specifically, because of the suppressive effect of a stronger stratification on the turbulence, a larger part of the energy is dissipated by microscopic Stokes flow around particles, while a smaller part of the energy is dissipated by the macroscopic convective motion of the fluids. |
doi_str_mv | 10.1007/s12665-021-10014-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586199181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586199181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-273bd1a79de431ead43fe90f48db2887ec508c3057740bbd22b18d14942673be3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59V87GaToxS_oKAHPYdskq0pu9maZC3trzd1RW_OZWbgeWbgBeASo2uMUH0TMWGsKhDBRd5xWRxOwAxzxgpGhDj9nTk6B4sYNygXxVQgNgPdiwrJ6c4WnTLWw3VQny7toR5DsD5F6HyyQenk_BruXHqHMQWVXOusgapvXIbgTmUGjvHIGBesTtCPvQ1Oqw5G149dNgYfL8BZq7poFz99Dt7u716Xj8Xq-eFpebsqFC1JKkhNG4NVLYwtKbbKlLS1ArUlNw3hvLa6QlxTVNV1iZrGENJgbnApSsKyaukcXE13t2H4GG1McjOMweeXklScYSEwx5kiE6XDEGOwrdwG16uwlxjJY7ByClbmYOV3sPKQJTpJMcN-bcPf6X-sL6dLfhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586199181</pqid></control><display><type>article</type><title>Particle-laden gravity currents interacting with stratified ambient water using direct numerical simulations</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Zhiguo ; Zhao, Liang ; Chen, Jingyao ; Yu, Ching-Hao ; Meiburg, Eckart</creator><creatorcontrib>He, Zhiguo ; Zhao, Liang ; Chen, Jingyao ; Yu, Ching-Hao ; Meiburg, Eckart</creatorcontrib><description>Particle-laden gravity currents propagating in stratified environments, such as turbidity currents induced by floods in estuaries or triggered by landslides in oceans, are important and complicated geophysical processes that require multidisciplinary studies. This paper numerically investigates the dynamic features of lock-release particle-laden gravity currents in linear stratification on a flat bed, with the main focus on the front velocity, entrainment ratio, and energy budget. The direct numerical simulations reveal that the suppressive effect of the ambient stratification on the turbulence may cause a particle-laden current to quickly lose momentum so that the near-constant front velocity of the particle-laden current cannot be maintained if no more particles are resuspended. After the acceleration stage, the entrainment ratio of a particle-laden gravity current barely changes with ambient stratification due to a combined effect from suppressed turbulent structures and deposition of particles. The energy-conversion process is accelerated by particle settling and is suppressed by ambient stratification. Specifically, because of the suppressive effect of a stronger stratification on the turbulence, a larger part of the energy is dissipated by microscopic Stokes flow around particles, while a smaller part of the energy is dissipated by the macroscopic convective motion of the fluids.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-021-10014-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acceleration ; Biogeosciences ; Convective motion ; Direct numerical simulation ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Energy budget ; Energy conversion ; Engineering ; Entrainment ; Environmental Science and Engineering ; Estuaries ; Flatbed ; Fluid flow ; Fluids ; Front velocity ; Geochemistry ; Geology ; Gravity ; Gravity currents ; Hydrology/Water Resources ; Investigations ; Laboratories ; Landslides ; Momentum ; Multidisciplinary research ; Numerical simulations ; Ocean currents ; Oceans ; Original Article ; Particle settling ; Simulation ; Stokes flow ; Stratification ; Terrestrial Pollution ; Turbidity ; Turbidity currents ; Turbulence ; Velocity</subject><ispartof>Environmental earth sciences, 2021-11, Vol.80 (21), Article 732</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-273bd1a79de431ead43fe90f48db2887ec508c3057740bbd22b18d14942673be3</citedby><cites>FETCH-LOGICAL-a342t-273bd1a79de431ead43fe90f48db2887ec508c3057740bbd22b18d14942673be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-021-10014-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-021-10014-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>He, Zhiguo</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chen, Jingyao</creatorcontrib><creatorcontrib>Yu, Ching-Hao</creatorcontrib><creatorcontrib>Meiburg, Eckart</creatorcontrib><title>Particle-laden gravity currents interacting with stratified ambient water using direct numerical simulations</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Particle-laden gravity currents propagating in stratified environments, such as turbidity currents induced by floods in estuaries or triggered by landslides in oceans, are important and complicated geophysical processes that require multidisciplinary studies. This paper numerically investigates the dynamic features of lock-release particle-laden gravity currents in linear stratification on a flat bed, with the main focus on the front velocity, entrainment ratio, and energy budget. The direct numerical simulations reveal that the suppressive effect of the ambient stratification on the turbulence may cause a particle-laden current to quickly lose momentum so that the near-constant front velocity of the particle-laden current cannot be maintained if no more particles are resuspended. After the acceleration stage, the entrainment ratio of a particle-laden gravity current barely changes with ambient stratification due to a combined effect from suppressed turbulent structures and deposition of particles. The energy-conversion process is accelerated by particle settling and is suppressed by ambient stratification. Specifically, because of the suppressive effect of a stronger stratification on the turbulence, a larger part of the energy is dissipated by microscopic Stokes flow around particles, while a smaller part of the energy is dissipated by the macroscopic convective motion of the fluids.</description><subject>Acceleration</subject><subject>Biogeosciences</subject><subject>Convective motion</subject><subject>Direct numerical simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Energy budget</subject><subject>Energy conversion</subject><subject>Engineering</subject><subject>Entrainment</subject><subject>Environmental Science and Engineering</subject><subject>Estuaries</subject><subject>Flatbed</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Front velocity</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Gravity</subject><subject>Gravity currents</subject><subject>Hydrology/Water Resources</subject><subject>Investigations</subject><subject>Laboratories</subject><subject>Landslides</subject><subject>Momentum</subject><subject>Multidisciplinary research</subject><subject>Numerical simulations</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Original Article</subject><subject>Particle settling</subject><subject>Simulation</subject><subject>Stokes flow</subject><subject>Stratification</subject><subject>Terrestrial Pollution</subject><subject>Turbidity</subject><subject>Turbidity currents</subject><subject>Turbulence</subject><subject>Velocity</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59V87GaToxS_oKAHPYdskq0pu9maZC3trzd1RW_OZWbgeWbgBeASo2uMUH0TMWGsKhDBRd5xWRxOwAxzxgpGhDj9nTk6B4sYNygXxVQgNgPdiwrJ6c4WnTLWw3VQny7toR5DsD5F6HyyQenk_BruXHqHMQWVXOusgapvXIbgTmUGjvHIGBesTtCPvQ1Oqw5G149dNgYfL8BZq7poFz99Dt7u716Xj8Xq-eFpebsqFC1JKkhNG4NVLYwtKbbKlLS1ArUlNw3hvLa6QlxTVNV1iZrGENJgbnApSsKyaukcXE13t2H4GG1McjOMweeXklScYSEwx5kiE6XDEGOwrdwG16uwlxjJY7ByClbmYOV3sPKQJTpJMcN-bcPf6X-sL6dLfhQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>He, Zhiguo</creator><creator>Zhao, Liang</creator><creator>Chen, Jingyao</creator><creator>Yu, Ching-Hao</creator><creator>Meiburg, Eckart</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20211101</creationdate><title>Particle-laden gravity currents interacting with stratified ambient water using direct numerical simulations</title><author>He, Zhiguo ; Zhao, Liang ; Chen, Jingyao ; Yu, Ching-Hao ; Meiburg, Eckart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-273bd1a79de431ead43fe90f48db2887ec508c3057740bbd22b18d14942673be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Biogeosciences</topic><topic>Convective motion</topic><topic>Direct numerical simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Energy budget</topic><topic>Energy conversion</topic><topic>Engineering</topic><topic>Entrainment</topic><topic>Environmental Science and Engineering</topic><topic>Estuaries</topic><topic>Flatbed</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Front velocity</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Gravity</topic><topic>Gravity currents</topic><topic>Hydrology/Water Resources</topic><topic>Investigations</topic><topic>Laboratories</topic><topic>Landslides</topic><topic>Momentum</topic><topic>Multidisciplinary research</topic><topic>Numerical simulations</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Original Article</topic><topic>Particle settling</topic><topic>Simulation</topic><topic>Stokes flow</topic><topic>Stratification</topic><topic>Terrestrial Pollution</topic><topic>Turbidity</topic><topic>Turbidity currents</topic><topic>Turbulence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhiguo</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chen, Jingyao</creatorcontrib><creatorcontrib>Yu, Ching-Hao</creatorcontrib><creatorcontrib>Meiburg, Eckart</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhiguo</au><au>Zhao, Liang</au><au>Chen, Jingyao</au><au>Yu, Ching-Hao</au><au>Meiburg, Eckart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle-laden gravity currents interacting with stratified ambient water using direct numerical simulations</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>80</volume><issue>21</issue><artnum>732</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Particle-laden gravity currents propagating in stratified environments, such as turbidity currents induced by floods in estuaries or triggered by landslides in oceans, are important and complicated geophysical processes that require multidisciplinary studies. This paper numerically investigates the dynamic features of lock-release particle-laden gravity currents in linear stratification on a flat bed, with the main focus on the front velocity, entrainment ratio, and energy budget. The direct numerical simulations reveal that the suppressive effect of the ambient stratification on the turbulence may cause a particle-laden current to quickly lose momentum so that the near-constant front velocity of the particle-laden current cannot be maintained if no more particles are resuspended. After the acceleration stage, the entrainment ratio of a particle-laden gravity current barely changes with ambient stratification due to a combined effect from suppressed turbulent structures and deposition of particles. The energy-conversion process is accelerated by particle settling and is suppressed by ambient stratification. Specifically, because of the suppressive effect of a stronger stratification on the turbulence, a larger part of the energy is dissipated by microscopic Stokes flow around particles, while a smaller part of the energy is dissipated by the macroscopic convective motion of the fluids.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-021-10014-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2021-11, Vol.80 (21), Article 732 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_journals_2586199181 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acceleration Biogeosciences Convective motion Direct numerical simulation Earth and Environmental Science Earth science Earth Sciences Energy budget Energy conversion Engineering Entrainment Environmental Science and Engineering Estuaries Flatbed Fluid flow Fluids Front velocity Geochemistry Geology Gravity Gravity currents Hydrology/Water Resources Investigations Laboratories Landslides Momentum Multidisciplinary research Numerical simulations Ocean currents Oceans Original Article Particle settling Simulation Stokes flow Stratification Terrestrial Pollution Turbidity Turbidity currents Turbulence Velocity |
title | Particle-laden gravity currents interacting with stratified ambient water using direct numerical simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle-laden%20gravity%20currents%20interacting%20with%20stratified%20ambient%20water%20using%20direct%20numerical%20simulations&rft.jtitle=Environmental%20earth%20sciences&rft.au=He,%20Zhiguo&rft.date=2021-11-01&rft.volume=80&rft.issue=21&rft.artnum=732&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-021-10014-z&rft_dat=%3Cproquest_cross%3E2586199181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586199181&rft_id=info:pmid/&rfr_iscdi=true |