On Ehresmann semigroups
We formulate an alternative approach to describing Ehresmann semigroups by means of left and right étale actions of a meet semilattice on a category. We also characterize the Ehresmann semigroups that arise as the set of all subsets of a finite category. As applications, we prove that every restrict...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2021-12, Vol.103 (3), p.953-965 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | 3 |
container_start_page | 953 |
container_title | Semigroup forum |
container_volume | 103 |
creator | Lawson, Mark V. |
description | We formulate an alternative approach to describing Ehresmann semigroups by means of left and right étale actions of a meet semilattice on a category. We also characterize the Ehresmann semigroups that arise as the set of all subsets of a finite category. As applications, we prove that every restriction semigroup can be nicely embedded into a restriction semigroup constructed from a category, and we describe when a restriction semigroup can be nicely embedded into an inverse semigroup. |
doi_str_mv | 10.1007/s00233-021-10200-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585945331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585945331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b07efdaf746b019851b2926a2bfd8a0a2a013d5af82eb2665c4ff22ce025f63</originalsourceid><addsrcrecordid>eNp9j89LwzAYhoMoWKdnwdPAc_T70aTtUcacwmAHvYe0TeaGbWeyHvzvjVbw5unjhfd5Px4hbhDuEKC4jwDELIFQIhCApBORYc4kCbk4FRkAFxIrpHNxEeMeUgbNmbje9PPlW3Cxs30_j67bbcMwHuKlOPP2Pbqr3zsTL4_L18WTXG9Wz4uHtWwYq6OsoXC-tb7IdQ1YlQprqkhbqn1bWrBkAblV1pfkatJaNbn3RI0DUl7zTNxOq4cwfIwuHs1-GEOfHhpSpapyxYypRVOrCUOMwXlzCLvOhk-DYL71zaRvkr750TeUIJ6gmMr91oW_6X-oL5rsWxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585945331</pqid></control><display><type>article</type><title>On Ehresmann semigroups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lawson, Mark V.</creator><creatorcontrib>Lawson, Mark V.</creatorcontrib><description>We formulate an alternative approach to describing Ehresmann semigroups by means of left and right étale actions of a meet semilattice on a category. We also characterize the Ehresmann semigroups that arise as the set of all subsets of a finite category. As applications, we prove that every restriction semigroup can be nicely embedded into a restriction semigroup constructed from a category, and we describe when a restriction semigroup can be nicely embedded into an inverse semigroup.</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-021-10200-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics ; Research Article ; Semigroups</subject><ispartof>Semigroup forum, 2021-12, Vol.103 (3), p.953-965</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b07efdaf746b019851b2926a2bfd8a0a2a013d5af82eb2665c4ff22ce025f63</citedby><cites>FETCH-LOGICAL-c319t-b07efdaf746b019851b2926a2bfd8a0a2a013d5af82eb2665c4ff22ce025f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00233-021-10200-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00233-021-10200-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Lawson, Mark V.</creatorcontrib><title>On Ehresmann semigroups</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>We formulate an alternative approach to describing Ehresmann semigroups by means of left and right étale actions of a meet semilattice on a category. We also characterize the Ehresmann semigroups that arise as the set of all subsets of a finite category. As applications, we prove that every restriction semigroup can be nicely embedded into a restriction semigroup constructed from a category, and we describe when a restriction semigroup can be nicely embedded into an inverse semigroup.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><subject>Semigroups</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j89LwzAYhoMoWKdnwdPAc_T70aTtUcacwmAHvYe0TeaGbWeyHvzvjVbw5unjhfd5Px4hbhDuEKC4jwDELIFQIhCApBORYc4kCbk4FRkAFxIrpHNxEeMeUgbNmbje9PPlW3Cxs30_j67bbcMwHuKlOPP2Pbqr3zsTL4_L18WTXG9Wz4uHtWwYq6OsoXC-tb7IdQ1YlQprqkhbqn1bWrBkAblV1pfkatJaNbn3RI0DUl7zTNxOq4cwfIwuHs1-GEOfHhpSpapyxYypRVOrCUOMwXlzCLvOhk-DYL71zaRvkr750TeUIJ6gmMr91oW_6X-oL5rsWxQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lawson, Mark V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>On Ehresmann semigroups</title><author>Lawson, Mark V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b07efdaf746b019851b2926a2bfd8a0a2a013d5af82eb2665c4ff22ce025f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><topic>Semigroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawson, Mark V.</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawson, Mark V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Ehresmann semigroups</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>103</volume><issue>3</issue><spage>953</spage><epage>965</epage><pages>953-965</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>We formulate an alternative approach to describing Ehresmann semigroups by means of left and right étale actions of a meet semilattice on a category. We also characterize the Ehresmann semigroups that arise as the set of all subsets of a finite category. As applications, we prove that every restriction semigroup can be nicely embedded into a restriction semigroup constructed from a category, and we describe when a restriction semigroup can be nicely embedded into an inverse semigroup.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-021-10200-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-1912 |
ispartof | Semigroup forum, 2021-12, Vol.103 (3), p.953-965 |
issn | 0037-1912 1432-2137 |
language | eng |
recordid | cdi_proquest_journals_2585945331 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Mathematics Mathematics and Statistics Research Article Semigroups |
title | On Ehresmann semigroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Ehresmann%20semigroups&rft.jtitle=Semigroup%20forum&rft.au=Lawson,%20Mark%20V.&rft.date=2021-12-01&rft.volume=103&rft.issue=3&rft.spage=953&rft.epage=965&rft.pages=953-965&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-021-10200-2&rft_dat=%3Cproquest_cross%3E2585945331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585945331&rft_id=info:pmid/&rfr_iscdi=true |