Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries

The homogeneous distribution of electrochemical catalysts in a carbon material with an ultrahigh pore volume and large surface area is a promising strategy for rapid conversion of lithium polysulfides to minimize the shuttle phenomenon. This work utilizes a porous carbon material produced via facile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-11, Vol.9 (41), p.23660-23674
Hauptverfasser: Yang, Jeongwoo, Dong Woo Kang, Kim, Hodong, Park, Jae Hyun, Choi, Won Yeong, Lee, Jae W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23674
container_issue 41
container_start_page 23660
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Yang, Jeongwoo
Dong Woo Kang
Kim, Hodong
Park, Jae Hyun
Choi, Won Yeong
Lee, Jae W
description The homogeneous distribution of electrochemical catalysts in a carbon material with an ultrahigh pore volume and large surface area is a promising strategy for rapid conversion of lithium polysulfides to minimize the shuttle phenomenon. This work utilizes a porous carbon material produced via facile CO2 conversion to achieve both the confinement of sulfur and the uniform distribution of Fe–N–C sites. It also seeks to dope more N atoms and increase porosity through a unique method of bubbling an ammonia solution, which increases the density of the Fe–N–C catalytically active sites and forms additional pores, providing numerous pathways for more efficient diffusion of Li ions. The increased pore volume maximizes the kinetics of polysulfide conversion through synergy with the catalysts distributed over the high surface area of the resulting product. DFT calculations elucidate the fundamental role of the Fe–N–C catalyst in terms of the energy reduction associated with the lithium polysulfide conversion process and enhanced Li-ion diffusion dynamics. The assembled cell exhibits a capacity of 590 mA h g−1 up to 150 cycles at a high current density of 7.0C, and a maximum areal capacity of 3.54 mA h cm−2 is delivered at 1.0C for a high sulfur amount of 4.3 mg cm−2.
doi_str_mv 10.1039/d1ta07415f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2585945284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585945284</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-985b7fde3fbae0ee3b56a35eef920f6199d511d6e69144626704e7fde077a0633</originalsourceid><addsrcrecordid>eNo9jc1KAzEURoMoWGo3PkHA9Wgy-ZnJUgarQrELdV0yzY1NGZMxybj2DVz4hj6JKYoXLvfjwncOQueUXFLC1JWhWZOGU2GP0KwmglQNV_L4P7ftKVqktCdlWkKkUjP0uZy80a_gsx5wDAPgYPESvj--Hsp2WG-zewecXIaEnccad-u6MhDL1-BpyFFXY4hhSnirYx88hgG2OQYD2IZYKjvXu-z8C067KeciGHfgQzHqA2_liuYR9zrnwoR0hk6sHhIs_u4cPS9vnrq7arW-ve-uV9VIW5Yr1Yq-sQaY7TUQANYLqZkAsKomVlKljKDUSJCKci5r2RAOhwJpGk0kY3N08csdY3ibIOXNPkzRF-WmFq1QXNQtZz-gHmqq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585945284</pqid></control><display><type>article</type><title>Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yang, Jeongwoo ; Dong Woo Kang ; Kim, Hodong ; Park, Jae Hyun ; Choi, Won Yeong ; Lee, Jae W</creator><creatorcontrib>Yang, Jeongwoo ; Dong Woo Kang ; Kim, Hodong ; Park, Jae Hyun ; Choi, Won Yeong ; Lee, Jae W</creatorcontrib><description>The homogeneous distribution of electrochemical catalysts in a carbon material with an ultrahigh pore volume and large surface area is a promising strategy for rapid conversion of lithium polysulfides to minimize the shuttle phenomenon. This work utilizes a porous carbon material produced via facile CO2 conversion to achieve both the confinement of sulfur and the uniform distribution of Fe–N–C sites. It also seeks to dope more N atoms and increase porosity through a unique method of bubbling an ammonia solution, which increases the density of the Fe–N–C catalytically active sites and forms additional pores, providing numerous pathways for more efficient diffusion of Li ions. The increased pore volume maximizes the kinetics of polysulfide conversion through synergy with the catalysts distributed over the high surface area of the resulting product. DFT calculations elucidate the fundamental role of the Fe–N–C catalyst in terms of the energy reduction associated with the lithium polysulfide conversion process and enhanced Li-ion diffusion dynamics. The assembled cell exhibits a capacity of 590 mA h g−1 up to 150 cycles at a high current density of 7.0C, and a maximum areal capacity of 3.54 mA h cm−2 is delivered at 1.0C for a high sulfur amount of 4.3 mg cm−2.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta07415f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Batteries ; Carbon ; Carbon dioxide ; Catalysts ; Conversion ; Electrochemistry ; Ion diffusion ; Lithium ; Lithium ions ; Lithium sulfur batteries ; Polysulfides ; Porosity ; Porous materials ; Sulfur ; Surface area</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-11, Vol.9 (41), p.23660-23674</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yang, Jeongwoo</creatorcontrib><creatorcontrib>Dong Woo Kang</creatorcontrib><creatorcontrib>Kim, Hodong</creatorcontrib><creatorcontrib>Park, Jae Hyun</creatorcontrib><creatorcontrib>Choi, Won Yeong</creatorcontrib><creatorcontrib>Lee, Jae W</creatorcontrib><title>Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The homogeneous distribution of electrochemical catalysts in a carbon material with an ultrahigh pore volume and large surface area is a promising strategy for rapid conversion of lithium polysulfides to minimize the shuttle phenomenon. This work utilizes a porous carbon material produced via facile CO2 conversion to achieve both the confinement of sulfur and the uniform distribution of Fe–N–C sites. It also seeks to dope more N atoms and increase porosity through a unique method of bubbling an ammonia solution, which increases the density of the Fe–N–C catalytically active sites and forms additional pores, providing numerous pathways for more efficient diffusion of Li ions. The increased pore volume maximizes the kinetics of polysulfide conversion through synergy with the catalysts distributed over the high surface area of the resulting product. DFT calculations elucidate the fundamental role of the Fe–N–C catalyst in terms of the energy reduction associated with the lithium polysulfide conversion process and enhanced Li-ion diffusion dynamics. The assembled cell exhibits a capacity of 590 mA h g−1 up to 150 cycles at a high current density of 7.0C, and a maximum areal capacity of 3.54 mA h cm−2 is delivered at 1.0C for a high sulfur amount of 4.3 mg cm−2.</description><subject>Ammonia</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Conversion</subject><subject>Electrochemistry</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium sulfur batteries</subject><subject>Polysulfides</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Sulfur</subject><subject>Surface area</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jc1KAzEURoMoWGo3PkHA9Wgy-ZnJUgarQrELdV0yzY1NGZMxybj2DVz4hj6JKYoXLvfjwncOQueUXFLC1JWhWZOGU2GP0KwmglQNV_L4P7ftKVqktCdlWkKkUjP0uZy80a_gsx5wDAPgYPESvj--Hsp2WG-zewecXIaEnccad-u6MhDL1-BpyFFXY4hhSnirYx88hgG2OQYD2IZYKjvXu-z8C067KeciGHfgQzHqA2_liuYR9zrnwoR0hk6sHhIs_u4cPS9vnrq7arW-ve-uV9VIW5Yr1Yq-sQaY7TUQANYLqZkAsKomVlKljKDUSJCKci5r2RAOhwJpGk0kY3N08csdY3ibIOXNPkzRF-WmFq1QXNQtZz-gHmqq</recordid><startdate>20211107</startdate><enddate>20211107</enddate><creator>Yang, Jeongwoo</creator><creator>Dong Woo Kang</creator><creator>Kim, Hodong</creator><creator>Park, Jae Hyun</creator><creator>Choi, Won Yeong</creator><creator>Lee, Jae W</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20211107</creationdate><title>Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries</title><author>Yang, Jeongwoo ; Dong Woo Kang ; Kim, Hodong ; Park, Jae Hyun ; Choi, Won Yeong ; Lee, Jae W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-985b7fde3fbae0ee3b56a35eef920f6199d511d6e69144626704e7fde077a0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Conversion</topic><topic>Electrochemistry</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium sulfur batteries</topic><topic>Polysulfides</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Sulfur</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jeongwoo</creatorcontrib><creatorcontrib>Dong Woo Kang</creatorcontrib><creatorcontrib>Kim, Hodong</creatorcontrib><creatorcontrib>Park, Jae Hyun</creatorcontrib><creatorcontrib>Choi, Won Yeong</creatorcontrib><creatorcontrib>Lee, Jae W</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jeongwoo</au><au>Dong Woo Kang</au><au>Kim, Hodong</au><au>Park, Jae Hyun</au><au>Choi, Won Yeong</au><au>Lee, Jae W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-11-07</date><risdate>2021</risdate><volume>9</volume><issue>41</issue><spage>23660</spage><epage>23674</epage><pages>23660-23674</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The homogeneous distribution of electrochemical catalysts in a carbon material with an ultrahigh pore volume and large surface area is a promising strategy for rapid conversion of lithium polysulfides to minimize the shuttle phenomenon. This work utilizes a porous carbon material produced via facile CO2 conversion to achieve both the confinement of sulfur and the uniform distribution of Fe–N–C sites. It also seeks to dope more N atoms and increase porosity through a unique method of bubbling an ammonia solution, which increases the density of the Fe–N–C catalytically active sites and forms additional pores, providing numerous pathways for more efficient diffusion of Li ions. The increased pore volume maximizes the kinetics of polysulfide conversion through synergy with the catalysts distributed over the high surface area of the resulting product. DFT calculations elucidate the fundamental role of the Fe–N–C catalyst in terms of the energy reduction associated with the lithium polysulfide conversion process and enhanced Li-ion diffusion dynamics. The assembled cell exhibits a capacity of 590 mA h g−1 up to 150 cycles at a high current density of 7.0C, and a maximum areal capacity of 3.54 mA h cm−2 is delivered at 1.0C for a high sulfur amount of 4.3 mg cm−2.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta07415f</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-11, Vol.9 (41), p.23660-23674
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2585945284
source Royal Society Of Chemistry Journals 2008-
subjects Ammonia
Batteries
Carbon
Carbon dioxide
Catalysts
Conversion
Electrochemistry
Ion diffusion
Lithium
Lithium ions
Lithium sulfur batteries
Polysulfides
Porosity
Porous materials
Sulfur
Surface area
title Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20role%20of%20Fe%E2%80%93N%E2%80%93C%20active%20sites%20in%20a%20CO2-derived%20ultra-porous%20carbon%20electrode%20for%20inhibiting%20shuttle%20phenomena%20in%20Li%E2%80%93S%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yang,%20Jeongwoo&rft.date=2021-11-07&rft.volume=9&rft.issue=41&rft.spage=23660&rft.epage=23674&rft.pages=23660-23674&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta07415f&rft_dat=%3Cproquest%3E2585945284%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585945284&rft_id=info:pmid/&rfr_iscdi=true