MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm
Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, hum...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2021-11, Vol.103 (3), Article 46 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of intelligent & robotic systems |
container_volume | 103 |
creator | Digiacomo, Francesca Bologna, Francesco Inglese, Francesco Stefanini, Cesare Milazzo, Mario |
description | Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material. |
doi_str_mv | 10.1007/s10846-021-01507-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2585636618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724055532</galeid><sourcerecordid>A724055532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwqce5w0qRNuI3BAGkTl3GO0tTZMrZ2pJ003p5sReKGfLBl_59t_YTcUhhRgOK-pSB5ngKjKVABRXo4IwMqiiwFDuqcDEAdR0zll-SqbdcAoKRQA_I4R7syC7N8SMbJqa69NZtk6qu99bGYm_CJITF1lXQrTJ6wQ9v5pk7Gm2UTfLfaXpMLZzYt3vzmIfmYPi8mr-ns_eVtMp6llgPrUmWUsiBKbqQELktbSFk5RZ3KOGOurFjuUCpFBaUFOuNEXuQWnSqx4JxhNiR3_d5daL722HZ63exDHU9qJqTIszynMqpGvWppNqh97ZouGBujwq23TY3Ox_64YByEEBmLAOsBG5q2Dej0LvitCd-agj6aq3tzdTRXn8zVhwhlPdRGcb3E8PfLP9QPgmN7Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585636618</pqid></control><display><type>article</type><title>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</title><source>SpringerLink Journals</source><creator>Digiacomo, Francesca ; Bologna, Francesco ; Inglese, Francesco ; Stefanini, Cesare ; Milazzo, Mario</creator><creatorcontrib>Digiacomo, Francesca ; Bologna, Francesco ; Inglese, Francesco ; Stefanini, Cesare ; Milazzo, Mario</creatorcontrib><description>Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-021-01507-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Augmented Reality ; Boundary conditions ; Computer vision ; Control ; Electrical Engineering ; Engineering ; Formability ; Human engineering ; Incompatibility ; Localization ; Machine vision ; Markers ; Mechanical Engineering ; Mechatronics ; Regular Paper ; Rigid structures ; Robotics ; Robots ; Vision systems ; Working conditions</subject><ispartof>Journal of intelligent & robotic systems, 2021-11, Vol.103 (3), Article 46</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</citedby><cites>FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</cites><orcidid>0000-0001-5416-6637 ; 0000-0003-0989-041X ; 0000-0001-8429-5544 ; 0000-0002-5990-8537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-021-01507-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-021-01507-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Digiacomo, Francesca</creatorcontrib><creatorcontrib>Bologna, Francesco</creatorcontrib><creatorcontrib>Inglese, Francesco</creatorcontrib><creatorcontrib>Stefanini, Cesare</creatorcontrib><creatorcontrib>Milazzo, Mario</creatorcontrib><title>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Augmented Reality</subject><subject>Boundary conditions</subject><subject>Computer vision</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Formability</subject><subject>Human engineering</subject><subject>Incompatibility</subject><subject>Localization</subject><subject>Machine vision</subject><subject>Markers</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Regular Paper</subject><subject>Rigid structures</subject><subject>Robotics</subject><subject>Robots</subject><subject>Vision systems</subject><subject>Working conditions</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFOwzAMhiMEEmPwApwqce5w0qRNuI3BAGkTl3GO0tTZMrZ2pJ003p5sReKGfLBl_59t_YTcUhhRgOK-pSB5ngKjKVABRXo4IwMqiiwFDuqcDEAdR0zll-SqbdcAoKRQA_I4R7syC7N8SMbJqa69NZtk6qu99bGYm_CJITF1lXQrTJ6wQ9v5pk7Gm2UTfLfaXpMLZzYt3vzmIfmYPi8mr-ns_eVtMp6llgPrUmWUsiBKbqQELktbSFk5RZ3KOGOurFjuUCpFBaUFOuNEXuQWnSqx4JxhNiR3_d5daL722HZ63exDHU9qJqTIszynMqpGvWppNqh97ZouGBujwq23TY3Ox_64YByEEBmLAOsBG5q2Dej0LvitCd-agj6aq3tzdTRXn8zVhwhlPdRGcb3E8PfLP9QPgmN7Nw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Digiacomo, Francesca</creator><creator>Bologna, Francesco</creator><creator>Inglese, Francesco</creator><creator>Stefanini, Cesare</creator><creator>Milazzo, Mario</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5416-6637</orcidid><orcidid>https://orcid.org/0000-0003-0989-041X</orcidid><orcidid>https://orcid.org/0000-0001-8429-5544</orcidid><orcidid>https://orcid.org/0000-0002-5990-8537</orcidid></search><sort><creationdate>20211101</creationdate><title>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</title><author>Digiacomo, Francesca ; Bologna, Francesco ; Inglese, Francesco ; Stefanini, Cesare ; Milazzo, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Augmented Reality</topic><topic>Boundary conditions</topic><topic>Computer vision</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Formability</topic><topic>Human engineering</topic><topic>Incompatibility</topic><topic>Localization</topic><topic>Machine vision</topic><topic>Markers</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Regular Paper</topic><topic>Rigid structures</topic><topic>Robotics</topic><topic>Robots</topic><topic>Vision systems</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Digiacomo, Francesca</creatorcontrib><creatorcontrib>Bologna, Francesco</creatorcontrib><creatorcontrib>Inglese, Francesco</creatorcontrib><creatorcontrib>Stefanini, Cesare</creatorcontrib><creatorcontrib>Milazzo, Mario</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Digiacomo, Francesca</au><au>Bologna, Francesco</au><au>Inglese, Francesco</au><au>Stefanini, Cesare</au><au>Milazzo, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>103</volume><issue>3</issue><artnum>46</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-021-01507-x</doi><orcidid>https://orcid.org/0000-0001-5416-6637</orcidid><orcidid>https://orcid.org/0000-0003-0989-041X</orcidid><orcidid>https://orcid.org/0000-0001-8429-5544</orcidid><orcidid>https://orcid.org/0000-0002-5990-8537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2021-11, Vol.103 (3), Article 46 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2585636618 |
source | SpringerLink Journals |
subjects | Accuracy Algorithms Artificial Intelligence Augmented Reality Boundary conditions Computer vision Control Electrical Engineering Engineering Formability Human engineering Incompatibility Localization Machine vision Markers Mechanical Engineering Mechatronics Regular Paper Rigid structures Robotics Robots Vision systems Working conditions |
title | MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MechaTag:%20A%20Mechanical%20Fiducial%20Marker%20and%20the%20Detection%20Algorithm&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Digiacomo,%20Francesca&rft.date=2021-11-01&rft.volume=103&rft.issue=3&rft.artnum=46&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-021-01507-x&rft_dat=%3Cgale_proqu%3EA724055532%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585636618&rft_id=info:pmid/&rft_galeid=A724055532&rfr_iscdi=true |