MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm

Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2021-11, Vol.103 (3), Article 46
Hauptverfasser: Digiacomo, Francesca, Bologna, Francesco, Inglese, Francesco, Stefanini, Cesare, Milazzo, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of intelligent & robotic systems
container_volume 103
creator Digiacomo, Francesca
Bologna, Francesco
Inglese, Francesco
Stefanini, Cesare
Milazzo, Mario
description Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material.
doi_str_mv 10.1007/s10846-021-01507-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2585636618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724055532</galeid><sourcerecordid>A724055532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwqce5w0qRNuI3BAGkTl3GO0tTZMrZ2pJ003p5sReKGfLBl_59t_YTcUhhRgOK-pSB5ngKjKVABRXo4IwMqiiwFDuqcDEAdR0zll-SqbdcAoKRQA_I4R7syC7N8SMbJqa69NZtk6qu99bGYm_CJITF1lXQrTJ6wQ9v5pk7Gm2UTfLfaXpMLZzYt3vzmIfmYPi8mr-ns_eVtMp6llgPrUmWUsiBKbqQELktbSFk5RZ3KOGOurFjuUCpFBaUFOuNEXuQWnSqx4JxhNiR3_d5daL722HZ63exDHU9qJqTIszynMqpGvWppNqh97ZouGBujwq23TY3Ox_64YByEEBmLAOsBG5q2Dej0LvitCd-agj6aq3tzdTRXn8zVhwhlPdRGcb3E8PfLP9QPgmN7Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585636618</pqid></control><display><type>article</type><title>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</title><source>SpringerLink Journals</source><creator>Digiacomo, Francesca ; Bologna, Francesco ; Inglese, Francesco ; Stefanini, Cesare ; Milazzo, Mario</creator><creatorcontrib>Digiacomo, Francesca ; Bologna, Francesco ; Inglese, Francesco ; Stefanini, Cesare ; Milazzo, Mario</creatorcontrib><description>Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-021-01507-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Augmented Reality ; Boundary conditions ; Computer vision ; Control ; Electrical Engineering ; Engineering ; Formability ; Human engineering ; Incompatibility ; Localization ; Machine vision ; Markers ; Mechanical Engineering ; Mechatronics ; Regular Paper ; Rigid structures ; Robotics ; Robots ; Vision systems ; Working conditions</subject><ispartof>Journal of intelligent &amp; robotic systems, 2021-11, Vol.103 (3), Article 46</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</citedby><cites>FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</cites><orcidid>0000-0001-5416-6637 ; 0000-0003-0989-041X ; 0000-0001-8429-5544 ; 0000-0002-5990-8537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-021-01507-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-021-01507-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Digiacomo, Francesca</creatorcontrib><creatorcontrib>Bologna, Francesco</creatorcontrib><creatorcontrib>Inglese, Francesco</creatorcontrib><creatorcontrib>Stefanini, Cesare</creatorcontrib><creatorcontrib>Milazzo, Mario</creatorcontrib><title>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Augmented Reality</subject><subject>Boundary conditions</subject><subject>Computer vision</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Formability</subject><subject>Human engineering</subject><subject>Incompatibility</subject><subject>Localization</subject><subject>Machine vision</subject><subject>Markers</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Regular Paper</subject><subject>Rigid structures</subject><subject>Robotics</subject><subject>Robots</subject><subject>Vision systems</subject><subject>Working conditions</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFOwzAMhiMEEmPwApwqce5w0qRNuI3BAGkTl3GO0tTZMrZ2pJ003p5sReKGfLBl_59t_YTcUhhRgOK-pSB5ngKjKVABRXo4IwMqiiwFDuqcDEAdR0zll-SqbdcAoKRQA_I4R7syC7N8SMbJqa69NZtk6qu99bGYm_CJITF1lXQrTJ6wQ9v5pk7Gm2UTfLfaXpMLZzYt3vzmIfmYPi8mr-ns_eVtMp6llgPrUmWUsiBKbqQELktbSFk5RZ3KOGOurFjuUCpFBaUFOuNEXuQWnSqx4JxhNiR3_d5daL722HZ63exDHU9qJqTIszynMqpGvWppNqh97ZouGBujwq23TY3Ox_64YByEEBmLAOsBG5q2Dej0LvitCd-agj6aq3tzdTRXn8zVhwhlPdRGcb3E8PfLP9QPgmN7Nw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Digiacomo, Francesca</creator><creator>Bologna, Francesco</creator><creator>Inglese, Francesco</creator><creator>Stefanini, Cesare</creator><creator>Milazzo, Mario</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5416-6637</orcidid><orcidid>https://orcid.org/0000-0003-0989-041X</orcidid><orcidid>https://orcid.org/0000-0001-8429-5544</orcidid><orcidid>https://orcid.org/0000-0002-5990-8537</orcidid></search><sort><creationdate>20211101</creationdate><title>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</title><author>Digiacomo, Francesca ; Bologna, Francesco ; Inglese, Francesco ; Stefanini, Cesare ; Milazzo, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9a99c05b4a88048bc788df91f93422fbd26fe89915117efaf5676cef9be7442e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Augmented Reality</topic><topic>Boundary conditions</topic><topic>Computer vision</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Formability</topic><topic>Human engineering</topic><topic>Incompatibility</topic><topic>Localization</topic><topic>Machine vision</topic><topic>Markers</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Regular Paper</topic><topic>Rigid structures</topic><topic>Robotics</topic><topic>Robots</topic><topic>Vision systems</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Digiacomo, Francesca</creatorcontrib><creatorcontrib>Bologna, Francesco</creatorcontrib><creatorcontrib>Inglese, Francesco</creatorcontrib><creatorcontrib>Stefanini, Cesare</creatorcontrib><creatorcontrib>Milazzo, Mario</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Digiacomo, Francesca</au><au>Bologna, Francesco</au><au>Inglese, Francesco</au><au>Stefanini, Cesare</au><au>Milazzo, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>103</volume><issue>3</issue><artnum>46</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g., shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag. Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without losing accuracy of recognition due to the shape and material.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-021-01507-x</doi><orcidid>https://orcid.org/0000-0001-5416-6637</orcidid><orcidid>https://orcid.org/0000-0003-0989-041X</orcidid><orcidid>https://orcid.org/0000-0001-8429-5544</orcidid><orcidid>https://orcid.org/0000-0002-5990-8537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2021-11, Vol.103 (3), Article 46
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2585636618
source SpringerLink Journals
subjects Accuracy
Algorithms
Artificial Intelligence
Augmented Reality
Boundary conditions
Computer vision
Control
Electrical Engineering
Engineering
Formability
Human engineering
Incompatibility
Localization
Machine vision
Markers
Mechanical Engineering
Mechatronics
Regular Paper
Rigid structures
Robotics
Robots
Vision systems
Working conditions
title MechaTag: A Mechanical Fiducial Marker and the Detection Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MechaTag:%20A%20Mechanical%20Fiducial%20Marker%20and%20the%20Detection%20Algorithm&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Digiacomo,%20Francesca&rft.date=2021-11-01&rft.volume=103&rft.issue=3&rft.artnum=46&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-021-01507-x&rft_dat=%3Cgale_proqu%3EA724055532%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585636618&rft_id=info:pmid/&rft_galeid=A724055532&rfr_iscdi=true