Two robust virtual element methods for the Brinkman equations
In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an H ( div ) -conforming velocity reconstruction operator for the velocity test fu...
Gespeichert in:
Veröffentlicht in: | Calcolo 2021-12, Vol.58 (4), Article 49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Calcolo |
container_volume | 58 |
creator | Wang, Gang Wang, Ying He, Yinnian |
description | In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an
H
(
div
)
-conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the
L
2
-projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods. |
doi_str_mv | 10.1007/s10092-021-00442-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585418539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585418539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytR8HD1r8goKXeg7ZTWK3djdtklX890ZX8CYDMwy87zvDg9A5hUsKUF7F3GtGgFECIAQj8gDNKGUFkYKLQzQDgIpAwcQxOolxk1cpKjFD16sPj4NvxpjwexfSqLfYbm1vh4R7m9beROx8wGlt8W3ohrdeD9juR506P8RTdOT0Ntqz3zlHL_d3q8UjWT4_PC1ulqTltE6EG140rNZlA6UBW3NncnFd1M5YaKmz-dNaO8saaYxojWw4Bd5qIaAUlPM5uphyd8HvRxuT2vgxDPmkYrKSglaS11nFJlUbfIzBOrULXa_Dp6KgvjGpCZPKmNQPJiWziU-mmMXDqw1_0f-4vgAk_2rV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585418539</pqid></control><display><type>article</type><title>Two robust virtual element methods for the Brinkman equations</title><source>SpringerLink Journals</source><creator>Wang, Gang ; Wang, Ying ; He, Yinnian</creator><creatorcontrib>Wang, Gang ; Wang, Ying ; He, Yinnian</creatorcontrib><description>In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an
H
(
div
)
-conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the
L
2
-projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-021-00442-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Polygons ; Polynomials ; Robustness (mathematics) ; Theory of Computation</subject><ispartof>Calcolo, 2021-12, Vol.58 (4), Article 49</ispartof><rights>The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2021</rights><rights>The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</citedby><cites>FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</cites><orcidid>0000-0001-5992-8696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-021-00442-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-021-00442-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>He, Yinnian</creatorcontrib><title>Two robust virtual element methods for the Brinkman equations</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an
H
(
div
)
-conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the
L
2
-projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods.</description><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Polygons</subject><subject>Polynomials</subject><subject>Robustness (mathematics)</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytR8HD1r8goKXeg7ZTWK3djdtklX890ZX8CYDMwy87zvDg9A5hUsKUF7F3GtGgFECIAQj8gDNKGUFkYKLQzQDgIpAwcQxOolxk1cpKjFD16sPj4NvxpjwexfSqLfYbm1vh4R7m9beROx8wGlt8W3ohrdeD9juR506P8RTdOT0Ntqz3zlHL_d3q8UjWT4_PC1ulqTltE6EG140rNZlA6UBW3NncnFd1M5YaKmz-dNaO8saaYxojWw4Bd5qIaAUlPM5uphyd8HvRxuT2vgxDPmkYrKSglaS11nFJlUbfIzBOrULXa_Dp6KgvjGpCZPKmNQPJiWziU-mmMXDqw1_0f-4vgAk_2rV</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Gang</creator><creator>Wang, Ying</creator><creator>He, Yinnian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5992-8696</orcidid></search><sort><creationdate>20211201</creationdate><title>Two robust virtual element methods for the Brinkman equations</title><author>Wang, Gang ; Wang, Ying ; He, Yinnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Polygons</topic><topic>Polynomials</topic><topic>Robustness (mathematics)</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>He, Yinnian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang</au><au>Wang, Ying</au><au>He, Yinnian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two robust virtual element methods for the Brinkman equations</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>58</volume><issue>4</issue><artnum>49</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an
H
(
div
)
-conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the
L
2
-projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-021-00442-5</doi><orcidid>https://orcid.org/0000-0001-5992-8696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-0624 |
ispartof | Calcolo, 2021-12, Vol.58 (4), Article 49 |
issn | 0008-0624 1126-5434 |
language | eng |
recordid | cdi_proquest_journals_2585418539 |
source | SpringerLink Journals |
subjects | Mathematical analysis Mathematics Mathematics and Statistics Numerical Analysis Polygons Polynomials Robustness (mathematics) Theory of Computation |
title | Two robust virtual element methods for the Brinkman equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20robust%20virtual%20element%20methods%20for%20the%20Brinkman%20equations&rft.jtitle=Calcolo&rft.au=Wang,%20Gang&rft.date=2021-12-01&rft.volume=58&rft.issue=4&rft.artnum=49&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-021-00442-5&rft_dat=%3Cproquest_cross%3E2585418539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585418539&rft_id=info:pmid/&rfr_iscdi=true |