Two robust virtual element methods for the Brinkman equations

In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an H ( div ) -conforming velocity reconstruction operator for the velocity test fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2021-12, Vol.58 (4), Article 49
Hauptverfasser: Wang, Gang, Wang, Ying, He, Yinnian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Calcolo
container_volume 58
creator Wang, Gang
Wang, Ying
He, Yinnian
description In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an H ( div ) -conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the L 2 -projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods.
doi_str_mv 10.1007/s10092-021-00442-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585418539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585418539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytR8HD1r8goKXeg7ZTWK3djdtklX890ZX8CYDMwy87zvDg9A5hUsKUF7F3GtGgFECIAQj8gDNKGUFkYKLQzQDgIpAwcQxOolxk1cpKjFD16sPj4NvxpjwexfSqLfYbm1vh4R7m9beROx8wGlt8W3ohrdeD9juR506P8RTdOT0Ntqz3zlHL_d3q8UjWT4_PC1ulqTltE6EG140rNZlA6UBW3NncnFd1M5YaKmz-dNaO8saaYxojWw4Bd5qIaAUlPM5uphyd8HvRxuT2vgxDPmkYrKSglaS11nFJlUbfIzBOrULXa_Dp6KgvjGpCZPKmNQPJiWziU-mmMXDqw1_0f-4vgAk_2rV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585418539</pqid></control><display><type>article</type><title>Two robust virtual element methods for the Brinkman equations</title><source>SpringerLink Journals</source><creator>Wang, Gang ; Wang, Ying ; He, Yinnian</creator><creatorcontrib>Wang, Gang ; Wang, Ying ; He, Yinnian</creatorcontrib><description>In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an H ( div ) -conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the L 2 -projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-021-00442-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Polygons ; Polynomials ; Robustness (mathematics) ; Theory of Computation</subject><ispartof>Calcolo, 2021-12, Vol.58 (4), Article 49</ispartof><rights>The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2021</rights><rights>The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</citedby><cites>FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</cites><orcidid>0000-0001-5992-8696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-021-00442-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-021-00442-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>He, Yinnian</creatorcontrib><title>Two robust virtual element methods for the Brinkman equations</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an H ( div ) -conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the L 2 -projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods.</description><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Polygons</subject><subject>Polynomials</subject><subject>Robustness (mathematics)</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytR8HD1r8goKXeg7ZTWK3djdtklX890ZX8CYDMwy87zvDg9A5hUsKUF7F3GtGgFECIAQj8gDNKGUFkYKLQzQDgIpAwcQxOolxk1cpKjFD16sPj4NvxpjwexfSqLfYbm1vh4R7m9beROx8wGlt8W3ohrdeD9juR506P8RTdOT0Ntqz3zlHL_d3q8UjWT4_PC1ulqTltE6EG140rNZlA6UBW3NncnFd1M5YaKmz-dNaO8saaYxojWw4Bd5qIaAUlPM5uphyd8HvRxuT2vgxDPmkYrKSglaS11nFJlUbfIzBOrULXa_Dp6KgvjGpCZPKmNQPJiWziU-mmMXDqw1_0f-4vgAk_2rV</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Gang</creator><creator>Wang, Ying</creator><creator>He, Yinnian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5992-8696</orcidid></search><sort><creationdate>20211201</creationdate><title>Two robust virtual element methods for the Brinkman equations</title><author>Wang, Gang ; Wang, Ying ; He, Yinnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3d36b29a7b07d0e93fdfdf3a69fde0c1fe1269afe2b5dd4cd5b3103ca44074133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Polygons</topic><topic>Polynomials</topic><topic>Robustness (mathematics)</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>He, Yinnian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang</au><au>Wang, Ying</au><au>He, Yinnian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two robust virtual element methods for the Brinkman equations</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>58</volume><issue>4</issue><artnum>49</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>In this paper, we present two stable virtual element methods for the Brinkman equations robust in the Stokes and Darcy limits. We use a pair of stable virtual elements for the velocity and pressure. Firstly, we define an H ( div ) -conforming velocity reconstruction operator for the velocity test function. By employing it in the discretizations of the zero-order term and the right-hand-side source term, we propose the first virtual element method on convex polygonal meshes. Secondly, we construct the enhanced virtual element space in place of the original virtual element space such that one can exactly compute the L 2 -projection of virtual function onto linear polynomial space. We make full use of this projection to introduce the second virtual element method on general polygonal meshes. The well-posedness and uniform energy-error estimates of each method are strictly established. Finally, numerical experiments are provided to validate the theoretical results and illustrate the good performance of our methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-021-00442-5</doi><orcidid>https://orcid.org/0000-0001-5992-8696</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2021-12, Vol.58 (4), Article 49
issn 0008-0624
1126-5434
language eng
recordid cdi_proquest_journals_2585418539
source SpringerLink Journals
subjects Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical Analysis
Polygons
Polynomials
Robustness (mathematics)
Theory of Computation
title Two robust virtual element methods for the Brinkman equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20robust%20virtual%20element%20methods%20for%20the%20Brinkman%20equations&rft.jtitle=Calcolo&rft.au=Wang,%20Gang&rft.date=2021-12-01&rft.volume=58&rft.issue=4&rft.artnum=49&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-021-00442-5&rft_dat=%3Cproquest_cross%3E2585418539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585418539&rft_id=info:pmid/&rfr_iscdi=true