Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries
Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur e...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-10, Vol.33 (43), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 43 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Shi, Zixiong Sun, Zhongti Cai, Jingsheng Yang, Xianzhong Wei, Chaohui Wang, Menglei Ding, Yifan Sun, Jingyu |
description | Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems.
A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries. |
doi_str_mv | 10.1002/adma.202103050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2585377257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585377257</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-f9e57740c44bcb4841fcceaf69a745e96a8ed34b020110bb9eb5233f6c02dca53</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFa3rgOuU--8ksyytvUBLYLV9TCZ3JQpaRLzqHbXnyD4D_tLTKh0dTmH75wLh5BbCiMKwO5NsjEjBowCBwlnZEAlo74AJc_JABSXvgpEdEmu6noNACqAYEBwYXJXtplpXL7yZhnapiqsaUy2a5z15o4tvTdMim9v64y3xB5wW_SmrckO-58ppp3hzfKVyxGrviMtqi522P8uvQfTNJ2J9TW5SE1W483_HZKPx9n75Nmfvz69TMZzv2Scg58qlGEowAoR21hEgqbWokkDZUIhUQUmwoSLGBhQCnGsMJZdMA0ssMQayYfk7thbVsVni3Wj10Vb5d1LzWQkeRgyGXaUOlJfLsOdLiu3MdVOU9D9jrrfUZ921OPpYnxS_A81cmta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585377257</pqid></control><display><type>article</type><title>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</title><source>Access via Wiley Online Library</source><creator>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Yang, Xianzhong ; Wei, Chaohui ; Wang, Menglei ; Ding, Yifan ; Sun, Jingyu</creator><creatorcontrib>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Yang, Xianzhong ; Wei, Chaohui ; Wang, Menglei ; Ding, Yifan ; Sun, Jingyu</creatorcontrib><description>Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems.
A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202103050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Decay rate ; dual‐defect engineering ; Electrocatalysis ; Electrocatalysts ; Electrochemistry ; Electrokinetics ; Energy storage ; Li 2S redox ; Lithium sulfur batteries ; Li–S batteries ; Materials science ; Polysulfides ; selectivity ; Storage batteries ; Sulfur</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202103050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202103050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</title><title>Advanced materials (Weinheim)</title><description>Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems.
A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries.</description><subject>Decay rate</subject><subject>dual‐defect engineering</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrokinetics</subject><subject>Energy storage</subject><subject>Li 2S redox</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Materials science</subject><subject>Polysulfides</subject><subject>selectivity</subject><subject>Storage batteries</subject><subject>Sulfur</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFa3rgOuU--8ksyytvUBLYLV9TCZ3JQpaRLzqHbXnyD4D_tLTKh0dTmH75wLh5BbCiMKwO5NsjEjBowCBwlnZEAlo74AJc_JABSXvgpEdEmu6noNACqAYEBwYXJXtplpXL7yZhnapiqsaUy2a5z15o4tvTdMim9v64y3xB5wW_SmrckO-58ppp3hzfKVyxGrviMtqi522P8uvQfTNJ2J9TW5SE1W483_HZKPx9n75Nmfvz69TMZzv2Scg58qlGEowAoR21hEgqbWokkDZUIhUQUmwoSLGBhQCnGsMJZdMA0ssMQayYfk7thbVsVni3Wj10Vb5d1LzWQkeRgyGXaUOlJfLsOdLiu3MdVOU9D9jrrfUZ921OPpYnxS_A81cmta</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Shi, Zixiong</creator><creator>Sun, Zhongti</creator><creator>Cai, Jingsheng</creator><creator>Yang, Xianzhong</creator><creator>Wei, Chaohui</creator><creator>Wang, Menglei</creator><creator>Ding, Yifan</creator><creator>Sun, Jingyu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20211001</creationdate><title>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</title><author>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Yang, Xianzhong ; Wei, Chaohui ; Wang, Menglei ; Ding, Yifan ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-f9e57740c44bcb4841fcceaf69a745e96a8ed34b020110bb9eb5233f6c02dca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decay rate</topic><topic>dual‐defect engineering</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrokinetics</topic><topic>Energy storage</topic><topic>Li 2S redox</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Materials science</topic><topic>Polysulfides</topic><topic>selectivity</topic><topic>Storage batteries</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zixiong</au><au>Sun, Zhongti</au><au>Cai, Jingsheng</au><au>Yang, Xianzhong</au><au>Wei, Chaohui</au><au>Wang, Menglei</au><au>Ding, Yifan</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>43</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems.
A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202103050</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2585377257 |
source | Access via Wiley Online Library |
subjects | Decay rate dual‐defect engineering Electrocatalysis Electrocatalysts Electrochemistry Electrokinetics Energy storage Li 2S redox Lithium sulfur batteries Li–S batteries Materials science Polysulfides selectivity Storage batteries Sulfur |
title | Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Electrocatalytic%20Li2S%20Redox%20via%20Selective%20Dual%E2%80%90Defect%20Engineering%20for%20Li%E2%80%93S%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shi,%20Zixiong&rft.date=2021-10-01&rft.volume=33&rft.issue=43&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202103050&rft_dat=%3Cproquest_wiley%3E2585377257%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585377257&rft_id=info:pmid/&rfr_iscdi=true |