Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries

Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-10, Vol.33 (43), p.n/a
Hauptverfasser: Shi, Zixiong, Sun, Zhongti, Cai, Jingsheng, Yang, Xianzhong, Wei, Chaohui, Wang, Menglei, Ding, Yifan, Sun, Jingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page
container_title Advanced materials (Weinheim)
container_volume 33
creator Shi, Zixiong
Sun, Zhongti
Cai, Jingsheng
Yang, Xianzhong
Wei, Chaohui
Wang, Menglei
Ding, Yifan
Sun, Jingyu
description Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems. A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries.
doi_str_mv 10.1002/adma.202103050
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2585377257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585377257</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-f9e57740c44bcb4841fcceaf69a745e96a8ed34b020110bb9eb5233f6c02dca53</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFa3rgOuU--8ksyytvUBLYLV9TCZ3JQpaRLzqHbXnyD4D_tLTKh0dTmH75wLh5BbCiMKwO5NsjEjBowCBwlnZEAlo74AJc_JABSXvgpEdEmu6noNACqAYEBwYXJXtplpXL7yZhnapiqsaUy2a5z15o4tvTdMim9v64y3xB5wW_SmrckO-58ppp3hzfKVyxGrviMtqi522P8uvQfTNJ2J9TW5SE1W483_HZKPx9n75Nmfvz69TMZzv2Scg58qlGEowAoR21hEgqbWokkDZUIhUQUmwoSLGBhQCnGsMJZdMA0ssMQayYfk7thbVsVni3Wj10Vb5d1LzWQkeRgyGXaUOlJfLsOdLiu3MdVOU9D9jrrfUZ921OPpYnxS_A81cmta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585377257</pqid></control><display><type>article</type><title>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</title><source>Access via Wiley Online Library</source><creator>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Yang, Xianzhong ; Wei, Chaohui ; Wang, Menglei ; Ding, Yifan ; Sun, Jingyu</creator><creatorcontrib>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Yang, Xianzhong ; Wei, Chaohui ; Wang, Menglei ; Ding, Yifan ; Sun, Jingyu</creatorcontrib><description>Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems. A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202103050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Decay rate ; dual‐defect engineering ; Electrocatalysis ; Electrocatalysts ; Electrochemistry ; Electrokinetics ; Energy storage ; Li 2S redox ; Lithium sulfur batteries ; Li–S batteries ; Materials science ; Polysulfides ; selectivity ; Storage batteries ; Sulfur</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202103050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202103050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</title><title>Advanced materials (Weinheim)</title><description>Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems. A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries.</description><subject>Decay rate</subject><subject>dual‐defect engineering</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrokinetics</subject><subject>Energy storage</subject><subject>Li 2S redox</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Materials science</subject><subject>Polysulfides</subject><subject>selectivity</subject><subject>Storage batteries</subject><subject>Sulfur</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFa3rgOuU--8ksyytvUBLYLV9TCZ3JQpaRLzqHbXnyD4D_tLTKh0dTmH75wLh5BbCiMKwO5NsjEjBowCBwlnZEAlo74AJc_JABSXvgpEdEmu6noNACqAYEBwYXJXtplpXL7yZhnapiqsaUy2a5z15o4tvTdMim9v64y3xB5wW_SmrckO-58ppp3hzfKVyxGrviMtqi522P8uvQfTNJ2J9TW5SE1W483_HZKPx9n75Nmfvz69TMZzv2Scg58qlGEowAoR21hEgqbWokkDZUIhUQUmwoSLGBhQCnGsMJZdMA0ssMQayYfk7thbVsVni3Wj10Vb5d1LzWQkeRgyGXaUOlJfLsOdLiu3MdVOU9D9jrrfUZ921OPpYnxS_A81cmta</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Shi, Zixiong</creator><creator>Sun, Zhongti</creator><creator>Cai, Jingsheng</creator><creator>Yang, Xianzhong</creator><creator>Wei, Chaohui</creator><creator>Wang, Menglei</creator><creator>Ding, Yifan</creator><creator>Sun, Jingyu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20211001</creationdate><title>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</title><author>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Yang, Xianzhong ; Wei, Chaohui ; Wang, Menglei ; Ding, Yifan ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-f9e57740c44bcb4841fcceaf69a745e96a8ed34b020110bb9eb5233f6c02dca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decay rate</topic><topic>dual‐defect engineering</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrokinetics</topic><topic>Energy storage</topic><topic>Li 2S redox</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Materials science</topic><topic>Polysulfides</topic><topic>selectivity</topic><topic>Storage batteries</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zixiong</au><au>Sun, Zhongti</au><au>Cai, Jingsheng</au><au>Yang, Xianzhong</au><au>Wei, Chaohui</au><au>Wang, Menglei</au><au>Ding, Yifan</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>43</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lithium–sulfur (Li–S) batteries are promising candidates for next‐generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual‐defect engineering (i.e., introducing both N‐doping and Se‐vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li–S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm−2) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual‐defect engineering is an appealing approach toward working Li–S systems. A common MoSe2 electrocatalyst synergizing N‐doping and Se‐vacancies enables optimal Li2S electrocatalytic manipulation toward favorable bidirectional sulfur redox chemistry with high electrocatalytic selectivity, accordingly achieving excellent rate performance, cycling stability, and areal capacity in pursuit of working Li–S batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202103050</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2585377257
source Access via Wiley Online Library
subjects Decay rate
dual‐defect engineering
Electrocatalysis
Electrocatalysts
Electrochemistry
Electrokinetics
Energy storage
Li 2S redox
Lithium sulfur batteries
Li–S batteries
Materials science
Polysulfides
selectivity
Storage batteries
Sulfur
title Manipulating Electrocatalytic Li2S Redox via Selective Dual‐Defect Engineering for Li–S Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Electrocatalytic%20Li2S%20Redox%20via%20Selective%20Dual%E2%80%90Defect%20Engineering%20for%20Li%E2%80%93S%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shi,%20Zixiong&rft.date=2021-10-01&rft.volume=33&rft.issue=43&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202103050&rft_dat=%3Cproquest_wiley%3E2585377257%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585377257&rft_id=info:pmid/&rfr_iscdi=true