Automatic identification of commodity label images using lightweight attention network
Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this w...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-11, Vol.33 (21), p.14413-14428 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14428 |
---|---|
container_issue | 21 |
container_start_page | 14413 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Chen, Junde Zeb, Adnan Yang, Shuangyuan Zhang, Defu Nanehkaran, Y. A. |
description | Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at
https://github.com/xtu502/Automatic-identification-of-commodity-label-images
. |
doi_str_mv | 10.1007/s00521-021-06081-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585227940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585227940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Fz9XJV5Mcl8UvWPCiXkPbpDVr26xJyrL_3pYK3jzMDMO8zwzzInSD4Q4DiPsIwAnOYY4CJM7VCVphRmlOgctTtALF5hGj5-gixh0AsELyFfpYj8n3ZXJ15owdkmtcPXV-yHyT1b7vvXHpmHVlZbvM9WVrYzZGN7RZ59rPdLBzzsqUZnaiBpsOPnxdobOm7KK9_q2X6P3x4W3znG9fn142621eU6xSzhrTcFMqAgYrVamqoQoKWjZFRaURmBpppWKCEUIol1bQyrBKGhC8LgQT9BLdLnv3wX-PNia982MYppOacMkJEYrBpCKLqg4-xmAbvQ_TL-GoMejZP734p2GO2T-tJoguUJzEQ2vD3-p_qB8yYHO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585227940</pqid></control><display><type>article</type><title>Automatic identification of commodity label images using lightweight attention network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Junde ; Zeb, Adnan ; Yang, Shuangyuan ; Zhang, Defu ; Nanehkaran, Y. A.</creator><creatorcontrib>Chen, Junde ; Zeb, Adnan ; Yang, Shuangyuan ; Zhang, Defu ; Nanehkaran, Y. A.</creatorcontrib><description>Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at
https://github.com/xtu502/Automatic-identification-of-commodity-label-images
.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06081-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Channels ; Commodities ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Convolution ; Data Mining and Knowledge Discovery ; Image classification ; Image Processing and Computer Vision ; Lightweight ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2021-11, Vol.33 (21), p.14413-14428</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</citedby><cites>FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</cites><orcidid>0000-0002-2396-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06081-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06081-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Junde</creatorcontrib><creatorcontrib>Zeb, Adnan</creatorcontrib><creatorcontrib>Yang, Shuangyuan</creatorcontrib><creatorcontrib>Zhang, Defu</creatorcontrib><creatorcontrib>Nanehkaran, Y. A.</creatorcontrib><title>Automatic identification of commodity label images using lightweight attention network</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at
https://github.com/xtu502/Automatic-identification-of-commodity-label-images
.</description><subject>Artificial Intelligence</subject><subject>Channels</subject><subject>Commodities</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Lightweight</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Fz9XJV5Mcl8UvWPCiXkPbpDVr26xJyrL_3pYK3jzMDMO8zwzzInSD4Q4DiPsIwAnOYY4CJM7VCVphRmlOgctTtALF5hGj5-gixh0AsELyFfpYj8n3ZXJ15owdkmtcPXV-yHyT1b7vvXHpmHVlZbvM9WVrYzZGN7RZ59rPdLBzzsqUZnaiBpsOPnxdobOm7KK9_q2X6P3x4W3znG9fn142621eU6xSzhrTcFMqAgYrVamqoQoKWjZFRaURmBpppWKCEUIol1bQyrBKGhC8LgQT9BLdLnv3wX-PNia982MYppOacMkJEYrBpCKLqg4-xmAbvQ_TL-GoMejZP734p2GO2T-tJoguUJzEQ2vD3-p_qB8yYHO8</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Chen, Junde</creator><creator>Zeb, Adnan</creator><creator>Yang, Shuangyuan</creator><creator>Zhang, Defu</creator><creator>Nanehkaran, Y. A.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2396-1205</orcidid></search><sort><creationdate>20211101</creationdate><title>Automatic identification of commodity label images using lightweight attention network</title><author>Chen, Junde ; Zeb, Adnan ; Yang, Shuangyuan ; Zhang, Defu ; Nanehkaran, Y. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Channels</topic><topic>Commodities</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Lightweight</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junde</creatorcontrib><creatorcontrib>Zeb, Adnan</creatorcontrib><creatorcontrib>Yang, Shuangyuan</creatorcontrib><creatorcontrib>Zhang, Defu</creatorcontrib><creatorcontrib>Nanehkaran, Y. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junde</au><au>Zeb, Adnan</au><au>Yang, Shuangyuan</au><au>Zhang, Defu</au><au>Nanehkaran, Y. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic identification of commodity label images using lightweight attention network</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>21</issue><spage>14413</spage><epage>14428</epage><pages>14413-14428</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at
https://github.com/xtu502/Automatic-identification-of-commodity-label-images
.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06081-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2396-1205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-11, Vol.33 (21), p.14413-14428 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2585227940 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Channels Commodities Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Convolution Data Mining and Knowledge Discovery Image classification Image Processing and Computer Vision Lightweight Original Article Probability and Statistics in Computer Science |
title | Automatic identification of commodity label images using lightweight attention network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20identification%20of%20commodity%20label%20images%20using%20lightweight%20attention%20network&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Chen,%20Junde&rft.date=2021-11-01&rft.volume=33&rft.issue=21&rft.spage=14413&rft.epage=14428&rft.pages=14413-14428&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06081-9&rft_dat=%3Cproquest_cross%3E2585227940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585227940&rft_id=info:pmid/&rfr_iscdi=true |