Automatic identification of commodity label images using lightweight attention network

Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2021-11, Vol.33 (21), p.14413-14428
Hauptverfasser: Chen, Junde, Zeb, Adnan, Yang, Shuangyuan, Zhang, Defu, Nanehkaran, Y. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14428
container_issue 21
container_start_page 14413
container_title Neural computing & applications
container_volume 33
creator Chen, Junde
Zeb, Adnan
Yang, Shuangyuan
Zhang, Defu
Nanehkaran, Y. A.
description Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at https://github.com/xtu502/Automatic-identification-of-commodity-label-images .
doi_str_mv 10.1007/s00521-021-06081-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585227940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585227940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Fz9XJV5Mcl8UvWPCiXkPbpDVr26xJyrL_3pYK3jzMDMO8zwzzInSD4Q4DiPsIwAnOYY4CJM7VCVphRmlOgctTtALF5hGj5-gixh0AsELyFfpYj8n3ZXJ15owdkmtcPXV-yHyT1b7vvXHpmHVlZbvM9WVrYzZGN7RZ59rPdLBzzsqUZnaiBpsOPnxdobOm7KK9_q2X6P3x4W3znG9fn142621eU6xSzhrTcFMqAgYrVamqoQoKWjZFRaURmBpppWKCEUIol1bQyrBKGhC8LgQT9BLdLnv3wX-PNia982MYppOacMkJEYrBpCKLqg4-xmAbvQ_TL-GoMejZP734p2GO2T-tJoguUJzEQ2vD3-p_qB8yYHO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585227940</pqid></control><display><type>article</type><title>Automatic identification of commodity label images using lightweight attention network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Junde ; Zeb, Adnan ; Yang, Shuangyuan ; Zhang, Defu ; Nanehkaran, Y. A.</creator><creatorcontrib>Chen, Junde ; Zeb, Adnan ; Yang, Shuangyuan ; Zhang, Defu ; Nanehkaran, Y. A.</creatorcontrib><description>Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at https://github.com/xtu502/Automatic-identification-of-commodity-label-images .</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06081-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Channels ; Commodities ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Convolution ; Data Mining and Knowledge Discovery ; Image classification ; Image Processing and Computer Vision ; Lightweight ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2021-11, Vol.33 (21), p.14413-14428</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</citedby><cites>FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</cites><orcidid>0000-0002-2396-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06081-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06081-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Junde</creatorcontrib><creatorcontrib>Zeb, Adnan</creatorcontrib><creatorcontrib>Yang, Shuangyuan</creatorcontrib><creatorcontrib>Zhang, Defu</creatorcontrib><creatorcontrib>Nanehkaran, Y. A.</creatorcontrib><title>Automatic identification of commodity label images using lightweight attention network</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at https://github.com/xtu502/Automatic-identification-of-commodity-label-images .</description><subject>Artificial Intelligence</subject><subject>Channels</subject><subject>Commodities</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Lightweight</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Fz9XJV5Mcl8UvWPCiXkPbpDVr26xJyrL_3pYK3jzMDMO8zwzzInSD4Q4DiPsIwAnOYY4CJM7VCVphRmlOgctTtALF5hGj5-gixh0AsELyFfpYj8n3ZXJ15owdkmtcPXV-yHyT1b7vvXHpmHVlZbvM9WVrYzZGN7RZ59rPdLBzzsqUZnaiBpsOPnxdobOm7KK9_q2X6P3x4W3znG9fn142621eU6xSzhrTcFMqAgYrVamqoQoKWjZFRaURmBpppWKCEUIol1bQyrBKGhC8LgQT9BLdLnv3wX-PNia982MYppOacMkJEYrBpCKLqg4-xmAbvQ_TL-GoMejZP734p2GO2T-tJoguUJzEQ2vD3-p_qB8yYHO8</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Chen, Junde</creator><creator>Zeb, Adnan</creator><creator>Yang, Shuangyuan</creator><creator>Zhang, Defu</creator><creator>Nanehkaran, Y. A.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2396-1205</orcidid></search><sort><creationdate>20211101</creationdate><title>Automatic identification of commodity label images using lightweight attention network</title><author>Chen, Junde ; Zeb, Adnan ; Yang, Shuangyuan ; Zhang, Defu ; Nanehkaran, Y. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4fdf5da920d199b9bf39063af6b38d713d8e89474222358e73bd4b8d075c67473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Channels</topic><topic>Commodities</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Lightweight</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junde</creatorcontrib><creatorcontrib>Zeb, Adnan</creatorcontrib><creatorcontrib>Yang, Shuangyuan</creatorcontrib><creatorcontrib>Zhang, Defu</creatorcontrib><creatorcontrib>Nanehkaran, Y. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junde</au><au>Zeb, Adnan</au><au>Yang, Shuangyuan</au><au>Zhang, Defu</au><au>Nanehkaran, Y. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic identification of commodity label images using lightweight attention network</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>21</issue><spage>14413</spage><epage>14428</epage><pages>14413-14428</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Recent research has raised interest in applying image classification techniques to automatically identify the commodity label images for the business automation of retail enterprises. These techniques can help enterprises improve their service efficiency and realize digital transformation. In this work, we developed a lightweight attention network with a small size and comparable precision, namely MS-DenseNet, to identify the commodity label images. MS-DenseNet is based on the recent well-known DenseNet architecture, where we replaced the regular planner convolution in dense blocks with depthwise separable convolution to compress the model size. Further, the SE modules were incorporated in the proposed network to highlight the useful feature channels while suppressing the useless feature channels, which made good use of interdependencies between channels and realized the maximum reuse of inter-channel relations. Besides, the two-stage progressive strategy was adopted in model training. The proposed procedure achieved significant performance gain with an average accuracy of 97.60% on the identification of commodity label images task. Also, it realized a 94.90% average accuracy on public datasets. The experimental findings present a substantial performance compared with existing methods and also demonstrate the effectiveness and extensibility of the proposed procedure. Our code is available at https://github.com/xtu502/Automatic-identification-of-commodity-label-images .</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06081-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2396-1205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2021-11, Vol.33 (21), p.14413-14428
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2585227940
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Channels
Commodities
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convolution
Data Mining and Knowledge Discovery
Image classification
Image Processing and Computer Vision
Lightweight
Original Article
Probability and Statistics in Computer Science
title Automatic identification of commodity label images using lightweight attention network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20identification%20of%20commodity%20label%20images%20using%20lightweight%20attention%20network&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Chen,%20Junde&rft.date=2021-11-01&rft.volume=33&rft.issue=21&rft.spage=14413&rft.epage=14428&rft.pages=14413-14428&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06081-9&rft_dat=%3Cproquest_cross%3E2585227940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585227940&rft_id=info:pmid/&rfr_iscdi=true