Time-Fractional Klein–Gordon Equation with Solitary/Shock Waves Solutions

In this article, we study the time-fractional nonlinear Klein–Gordon equation in Caputo–Fabrizio’s sense and Atangana–Baleanu–Caputo’s sense. The modified double Laplace transform decomposition method is used to attain solutions in the form of series of the proposed model under aforesaid fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-10, Vol.2021, p.1-15
Hauptverfasser: Saifullah, Sayed, Ali, Amir, Irfan, Muhammad, Shah, Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Saifullah, Sayed
Ali, Amir
Irfan, Muhammad
Shah, Kamal
description In this article, we study the time-fractional nonlinear Klein–Gordon equation in Caputo–Fabrizio’s sense and Atangana–Baleanu–Caputo’s sense. The modified double Laplace transform decomposition method is used to attain solutions in the form of series of the proposed model under aforesaid fractional operators. The suggested method is the composition of the double Laplace transform and decomposition method. The convergence of the considered method is demonstrated for the considered model. It is observed that the obtained solutions converge to the exact solution of the proposed model. For validity, we consider two particular examples with appropriate initial conditions and derived the series solution in the sense of both operators for the considered model. From numerical solutions, it is observed that the considered model admits pulse-shaped solitons. It is also observed that the wave amplitude enhances with variations in time, which infers the coefficient α significantly increases the wave amplitude and affects the nonlinearity/dispersion effects, therefore may admit monotonic shocks. The physical behavior of the considered numerical examples is illustrated explicitly which reveals the evolution of localized shock excitations.
doi_str_mv 10.1155/2021/6858592
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585198905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585198905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3cb63013fbc64651b623d800944b30cb16aa3fc52db70961f87951993044085e3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqWw8QCRGCHUZ8dOPKKKFtRKDC2CLXIcR3VJ49ZOqNh4B96QJ8FROzPd6e7T6b8PoWvA9wCMjQgmMOIZy5ggJ2gAjNOYQZKehh6TJAZC38_RhfdrHEgG2QDNlmaj44mTqjW2kXU0q7Vpfr9_ptaVtoked53sN9HetKtoYWvTSvc1Wqys-oje5Kf2_bDrEX-JzipZe311rEP0Onlcjp_i-cv0efwwjxWlaRtTVXCKgVaF4glnUHBCywxjkSQFxaoALiWtFCNlkWLBocpSwUAIipMEZ0zTIbo53N06u-u0b_O17VwI73MSfgeRCcwCdXeglLPeO13lW2c2IXwOOO915b2u_Kgr4LcHfGWaUu7N__Qf5KNpMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585198905</pqid></control><display><type>article</type><title>Time-Fractional Klein–Gordon Equation with Solitary/Shock Waves Solutions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Saifullah, Sayed ; Ali, Amir ; Irfan, Muhammad ; Shah, Kamal</creator><contributor>Pekař, Libor ; Libor Pekař</contributor><creatorcontrib>Saifullah, Sayed ; Ali, Amir ; Irfan, Muhammad ; Shah, Kamal ; Pekař, Libor ; Libor Pekař</creatorcontrib><description>In this article, we study the time-fractional nonlinear Klein–Gordon equation in Caputo–Fabrizio’s sense and Atangana–Baleanu–Caputo’s sense. The modified double Laplace transform decomposition method is used to attain solutions in the form of series of the proposed model under aforesaid fractional operators. The suggested method is the composition of the double Laplace transform and decomposition method. The convergence of the considered method is demonstrated for the considered model. It is observed that the obtained solutions converge to the exact solution of the proposed model. For validity, we consider two particular examples with appropriate initial conditions and derived the series solution in the sense of both operators for the considered model. From numerical solutions, it is observed that the considered model admits pulse-shaped solitons. It is also observed that the wave amplitude enhances with variations in time, which infers the coefficient α significantly increases the wave amplitude and affects the nonlinearity/dispersion effects, therefore may admit monotonic shocks. The physical behavior of the considered numerical examples is illustrated explicitly which reveals the evolution of localized shock excitations.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6858592</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Amplitudes ; Calculus ; Control theory ; Convergence ; Decomposition ; Engineering ; Exact solutions ; Hypotheses ; Initial conditions ; Klein-Gordon equation ; Laplace transforms ; Mathematical models ; Nonlinearity ; Operators (mathematics) ; Ordinary differential equations ; Partial differential equations ; Physics ; Quantum field theory ; Shock waves ; Solitary waves</subject><ispartof>Mathematical problems in engineering, 2021-10, Vol.2021, p.1-15</ispartof><rights>Copyright © 2021 Sayed Saifullah et al.</rights><rights>Copyright © 2021 Sayed Saifullah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3cb63013fbc64651b623d800944b30cb16aa3fc52db70961f87951993044085e3</citedby><cites>FETCH-LOGICAL-c337t-3cb63013fbc64651b623d800944b30cb16aa3fc52db70961f87951993044085e3</cites><orcidid>0000-0001-7525-963X ; 0000-0002-2403-1296 ; 0000-0002-8851-4844 ; 0000-0002-0050-209X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Pekař, Libor</contributor><contributor>Libor Pekař</contributor><creatorcontrib>Saifullah, Sayed</creatorcontrib><creatorcontrib>Ali, Amir</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><title>Time-Fractional Klein–Gordon Equation with Solitary/Shock Waves Solutions</title><title>Mathematical problems in engineering</title><description>In this article, we study the time-fractional nonlinear Klein–Gordon equation in Caputo–Fabrizio’s sense and Atangana–Baleanu–Caputo’s sense. The modified double Laplace transform decomposition method is used to attain solutions in the form of series of the proposed model under aforesaid fractional operators. The suggested method is the composition of the double Laplace transform and decomposition method. The convergence of the considered method is demonstrated for the considered model. It is observed that the obtained solutions converge to the exact solution of the proposed model. For validity, we consider two particular examples with appropriate initial conditions and derived the series solution in the sense of both operators for the considered model. From numerical solutions, it is observed that the considered model admits pulse-shaped solitons. It is also observed that the wave amplitude enhances with variations in time, which infers the coefficient α significantly increases the wave amplitude and affects the nonlinearity/dispersion effects, therefore may admit monotonic shocks. The physical behavior of the considered numerical examples is illustrated explicitly which reveals the evolution of localized shock excitations.</description><subject>Amplitudes</subject><subject>Calculus</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Hypotheses</subject><subject>Initial conditions</subject><subject>Klein-Gordon equation</subject><subject>Laplace transforms</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Operators (mathematics)</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Quantum field theory</subject><subject>Shock waves</subject><subject>Solitary waves</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAQhi0EEqWw8QCRGCHUZ8dOPKKKFtRKDC2CLXIcR3VJ49ZOqNh4B96QJ8FROzPd6e7T6b8PoWvA9wCMjQgmMOIZy5ggJ2gAjNOYQZKehh6TJAZC38_RhfdrHEgG2QDNlmaj44mTqjW2kXU0q7Vpfr9_ptaVtoked53sN9HetKtoYWvTSvc1Wqys-oje5Kf2_bDrEX-JzipZe311rEP0Onlcjp_i-cv0efwwjxWlaRtTVXCKgVaF4glnUHBCywxjkSQFxaoALiWtFCNlkWLBocpSwUAIipMEZ0zTIbo53N06u-u0b_O17VwI73MSfgeRCcwCdXeglLPeO13lW2c2IXwOOO915b2u_Kgr4LcHfGWaUu7N__Qf5KNpMw</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Saifullah, Sayed</creator><creator>Ali, Amir</creator><creator>Irfan, Muhammad</creator><creator>Shah, Kamal</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7525-963X</orcidid><orcidid>https://orcid.org/0000-0002-2403-1296</orcidid><orcidid>https://orcid.org/0000-0002-8851-4844</orcidid><orcidid>https://orcid.org/0000-0002-0050-209X</orcidid></search><sort><creationdate>20211013</creationdate><title>Time-Fractional Klein–Gordon Equation with Solitary/Shock Waves Solutions</title><author>Saifullah, Sayed ; Ali, Amir ; Irfan, Muhammad ; Shah, Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3cb63013fbc64651b623d800944b30cb16aa3fc52db70961f87951993044085e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Calculus</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Hypotheses</topic><topic>Initial conditions</topic><topic>Klein-Gordon equation</topic><topic>Laplace transforms</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Operators (mathematics)</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Quantum field theory</topic><topic>Shock waves</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saifullah, Sayed</creatorcontrib><creatorcontrib>Ali, Amir</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saifullah, Sayed</au><au>Ali, Amir</au><au>Irfan, Muhammad</au><au>Shah, Kamal</au><au>Pekař, Libor</au><au>Libor Pekař</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Fractional Klein–Gordon Equation with Solitary/Shock Waves Solutions</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-10-13</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this article, we study the time-fractional nonlinear Klein–Gordon equation in Caputo–Fabrizio’s sense and Atangana–Baleanu–Caputo’s sense. The modified double Laplace transform decomposition method is used to attain solutions in the form of series of the proposed model under aforesaid fractional operators. The suggested method is the composition of the double Laplace transform and decomposition method. The convergence of the considered method is demonstrated for the considered model. It is observed that the obtained solutions converge to the exact solution of the proposed model. For validity, we consider two particular examples with appropriate initial conditions and derived the series solution in the sense of both operators for the considered model. From numerical solutions, it is observed that the considered model admits pulse-shaped solitons. It is also observed that the wave amplitude enhances with variations in time, which infers the coefficient α significantly increases the wave amplitude and affects the nonlinearity/dispersion effects, therefore may admit monotonic shocks. The physical behavior of the considered numerical examples is illustrated explicitly which reveals the evolution of localized shock excitations.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6858592</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7525-963X</orcidid><orcidid>https://orcid.org/0000-0002-2403-1296</orcidid><orcidid>https://orcid.org/0000-0002-8851-4844</orcidid><orcidid>https://orcid.org/0000-0002-0050-209X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021-10, Vol.2021, p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2585198905
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Amplitudes
Calculus
Control theory
Convergence
Decomposition
Engineering
Exact solutions
Hypotheses
Initial conditions
Klein-Gordon equation
Laplace transforms
Mathematical models
Nonlinearity
Operators (mathematics)
Ordinary differential equations
Partial differential equations
Physics
Quantum field theory
Shock waves
Solitary waves
title Time-Fractional Klein–Gordon Equation with Solitary/Shock Waves Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Fractional%20Klein%E2%80%93Gordon%20Equation%20with%20Solitary/Shock%20Waves%20Solutions&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Saifullah,%20Sayed&rft.date=2021-10-13&rft.volume=2021&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6858592&rft_dat=%3Cproquest_cross%3E2585198905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585198905&rft_id=info:pmid/&rfr_iscdi=true