Approximation of Elliptic Functions by Means of Trigonometric Functions with Applications
In this work, we give approximate expressions for Jacobian and elliptic Weierstrass functions and their inverses by means of the elementary trigonometric functions, sine and cosine. Results are reasonably accurate. We show the way the obtained results may be applied to solve nonlinear ODEs and other...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-10, Vol.2021, p.1-16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Salas, Alvaro H. Martinez, Lorenzo J. H. Ocampo R., David L. R. |
description | In this work, we give approximate expressions for Jacobian and elliptic Weierstrass functions and their inverses by means of the elementary trigonometric functions, sine and cosine. Results are reasonably accurate. We show the way the obtained results may be applied to solve nonlinear ODEs and other problems arising in nonlinear physics. The importance of the results in this work consists on giving easy and accurate way to evaluate the main elliptic functions cn, sn, and dn, as well as the Weierstrass elliptic function and their inverses. A general principle for solving some nonlinear problems through elementary functions is stated. No similar approach has been found in the existing literature. |
doi_str_mv | 10.1155/2021/5546666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585198894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585198894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-851544f0a467640a901c425a1130e93fb606f2419735290f66d662fd553417ee3</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujiYje_AGbeNSVTtvp7h4JATXBeMFET5uytFKybNd2CfDvLcLFi3OZycyXN3mPkFugjwCIA0YZDBCFjHVGeoCSpwgiO48zZSIFxj8uyVUIKxpJhLxHPodt693OrlVnXZM4k4zr2radrZLJpqkOy5DM98mrVnGI55m3X65xa935P8zWdsskitW2-pUK1-TCqDrom1Pvk_fJeDZ6TqdvTy-j4TStOM-6NEdAIQxVQmZSUFVQqARDBcCpLriZSyoNE1BkHFlBjZQLKZlZIHIBmda8T-6OutHH90aHrly5jW_iy5JhVC_yvBCRejhSlXcheG3K1kfTfl8CLQ_hlYfwylN4Eb8_4kvbLNTW_k__AP3TbWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585198894</pqid></control><display><type>article</type><title>Approximation of Elliptic Functions by Means of Trigonometric Functions with Applications</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Salas, Alvaro H. ; Martinez, Lorenzo J. H. ; Ocampo R., David L. R.</creator><contributor>M. A. Khater, Mostafa</contributor><creatorcontrib>Salas, Alvaro H. ; Martinez, Lorenzo J. H. ; Ocampo R., David L. R. ; M. A. Khater, Mostafa</creatorcontrib><description>In this work, we give approximate expressions for Jacobian and elliptic Weierstrass functions and their inverses by means of the elementary trigonometric functions, sine and cosine. Results are reasonably accurate. We show the way the obtained results may be applied to solve nonlinear ODEs and other problems arising in nonlinear physics. The importance of the results in this work consists on giving easy and accurate way to evaluate the main elliptic functions cn, sn, and dn, as well as the Weierstrass elliptic function and their inverses. A general principle for solving some nonlinear problems through elementary functions is stated. No similar approach has been found in the existing literature.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/5546666</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algebra ; Approximation ; Elliptic functions ; Helmholtz equations ; Integrals ; Mathematical problems ; Physics ; Trigonometric functions ; Weierstrass functions</subject><ispartof>Mathematical problems in engineering, 2021-10, Vol.2021, p.1-16</ispartof><rights>Copyright © 2021 Alvaro H. Salas et al.</rights><rights>Copyright © 2021 Alvaro H. Salas et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-851544f0a467640a901c425a1130e93fb606f2419735290f66d662fd553417ee3</citedby><cites>FETCH-LOGICAL-c337t-851544f0a467640a901c425a1130e93fb606f2419735290f66d662fd553417ee3</cites><orcidid>0000-0001-9698-6887 ; 0000-0001-9343-6062 ; 0000-0001-5097-694X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>M. A. Khater, Mostafa</contributor><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Martinez, Lorenzo J. H.</creatorcontrib><creatorcontrib>Ocampo R., David L. R.</creatorcontrib><title>Approximation of Elliptic Functions by Means of Trigonometric Functions with Applications</title><title>Mathematical problems in engineering</title><description>In this work, we give approximate expressions for Jacobian and elliptic Weierstrass functions and their inverses by means of the elementary trigonometric functions, sine and cosine. Results are reasonably accurate. We show the way the obtained results may be applied to solve nonlinear ODEs and other problems arising in nonlinear physics. The importance of the results in this work consists on giving easy and accurate way to evaluate the main elliptic functions cn, sn, and dn, as well as the Weierstrass elliptic function and their inverses. A general principle for solving some nonlinear problems through elementary functions is stated. No similar approach has been found in the existing literature.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Elliptic functions</subject><subject>Helmholtz equations</subject><subject>Integrals</subject><subject>Mathematical problems</subject><subject>Physics</subject><subject>Trigonometric functions</subject><subject>Weierstrass functions</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEFPAjEQhRujiYje_AGbeNSVTtvp7h4JATXBeMFET5uytFKybNd2CfDvLcLFi3OZycyXN3mPkFugjwCIA0YZDBCFjHVGeoCSpwgiO48zZSIFxj8uyVUIKxpJhLxHPodt693OrlVnXZM4k4zr2radrZLJpqkOy5DM98mrVnGI55m3X65xa935P8zWdsskitW2-pUK1-TCqDrom1Pvk_fJeDZ6TqdvTy-j4TStOM-6NEdAIQxVQmZSUFVQqARDBcCpLriZSyoNE1BkHFlBjZQLKZlZIHIBmda8T-6OutHH90aHrly5jW_iy5JhVC_yvBCRejhSlXcheG3K1kfTfl8CLQ_hlYfwylN4Eb8_4kvbLNTW_k__AP3TbWQ</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Salas, Alvaro H.</creator><creator>Martinez, Lorenzo J. H.</creator><creator>Ocampo R., David L. R.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9698-6887</orcidid><orcidid>https://orcid.org/0000-0001-9343-6062</orcidid><orcidid>https://orcid.org/0000-0001-5097-694X</orcidid></search><sort><creationdate>20211011</creationdate><title>Approximation of Elliptic Functions by Means of Trigonometric Functions with Applications</title><author>Salas, Alvaro H. ; Martinez, Lorenzo J. H. ; Ocampo R., David L. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-851544f0a467640a901c425a1130e93fb606f2419735290f66d662fd553417ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Elliptic functions</topic><topic>Helmholtz equations</topic><topic>Integrals</topic><topic>Mathematical problems</topic><topic>Physics</topic><topic>Trigonometric functions</topic><topic>Weierstrass functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Martinez, Lorenzo J. H.</creatorcontrib><creatorcontrib>Ocampo R., David L. R.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salas, Alvaro H.</au><au>Martinez, Lorenzo J. H.</au><au>Ocampo R., David L. R.</au><au>M. A. Khater, Mostafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of Elliptic Functions by Means of Trigonometric Functions with Applications</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-10-11</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this work, we give approximate expressions for Jacobian and elliptic Weierstrass functions and their inverses by means of the elementary trigonometric functions, sine and cosine. Results are reasonably accurate. We show the way the obtained results may be applied to solve nonlinear ODEs and other problems arising in nonlinear physics. The importance of the results in this work consists on giving easy and accurate way to evaluate the main elliptic functions cn, sn, and dn, as well as the Weierstrass elliptic function and their inverses. A general principle for solving some nonlinear problems through elementary functions is stated. No similar approach has been found in the existing literature.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/5546666</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9698-6887</orcidid><orcidid>https://orcid.org/0000-0001-9343-6062</orcidid><orcidid>https://orcid.org/0000-0001-5097-694X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021-10, Vol.2021, p.1-16 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2585198894 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algebra Approximation Elliptic functions Helmholtz equations Integrals Mathematical problems Physics Trigonometric functions Weierstrass functions |
title | Approximation of Elliptic Functions by Means of Trigonometric Functions with Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20Elliptic%20Functions%20by%20Means%20of%20Trigonometric%20Functions%20with%20Applications&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Salas,%20Alvaro%20H.&rft.date=2021-10-11&rft.volume=2021&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/5546666&rft_dat=%3Cproquest_cross%3E2585198894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585198894&rft_id=info:pmid/&rfr_iscdi=true |