DAuGAN: An Approach for Augmenting Time Series Imbalanced Datasets via Latent Space Sampling Using Adversarial Techniques

Data augmentation is a commonly used technique in data science for improving the robustness and performance of machine learning models. The purpose of the paper is to study the feasibility of generating synthetic data points of temporal nature towards this end. A general approach named DAuGAN (Data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2021-10, Vol.2021, p.1-13
Hauptverfasser: Bratu, Andrei, Czibula, Gabriela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2021
creator Bratu, Andrei
Czibula, Gabriela
description Data augmentation is a commonly used technique in data science for improving the robustness and performance of machine learning models. The purpose of the paper is to study the feasibility of generating synthetic data points of temporal nature towards this end. A general approach named DAuGAN (Data Augmentation using Generative Adversarial Networks) is presented for identifying poorly represented sections of a time series, studying the synthesis and integration of new data points, and performance improvement on a benchmark machine learning model. The problem is studied and applied in the domain of algorithmic trading, whose constraints are presented and taken into consideration. The experimental results highlight an improvement in performance on a benchmark reinforcement learning agent trained on a dataset enhanced with DAuGAN to trade a financial instrument.
doi_str_mv 10.1155/2021/7877590
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585194973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585194973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7ec993381d06f749725f7bec8487c07f6301348184e6e1f84cc7001eacb47f123</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqWw8QMsMUKondi1zRa1UJAqGNpKbJHrXFpXSRrspKj_HkftzHJ3w3fv6T2E7il5ppTzUUxiOhJSCK7IBRpQKXikqPq-DDfhMlIxY9foxvsdIVRSQgboOE27Wfr5gtMap03j9tpscbF3OO02FdStrTd4aSvAC3AWPP6o1rrUtYEcT3WrPbQeH6zGc90GGi8abQKrq6bsP1e-n2l-AOe1s7rESzDb2v504G_RVaFLD3fnPUSrt9fl5D2af80-Juk8MrFibSTAKJUkkuZkXAimRMwLsQYjmRSGiGKcEJowSSWDMdBCMmNESAfarJkoaJwM0cNJN4Trfdtst-9cHSyzmEtOVdBMAvV0oozbe--gyBpnK-2OGSVZX27Wl5udyw344wnf2jrXv_Z_-g92yXhj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585194973</pqid></control><display><type>article</type><title>DAuGAN: An Approach for Augmenting Time Series Imbalanced Datasets via Latent Space Sampling Using Adversarial Techniques</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bratu, Andrei ; Czibula, Gabriela</creator><contributor>Liong, Sze-Teng ; Sze-Teng Liong</contributor><creatorcontrib>Bratu, Andrei ; Czibula, Gabriela ; Liong, Sze-Teng ; Sze-Teng Liong</creatorcontrib><description>Data augmentation is a commonly used technique in data science for improving the robustness and performance of machine learning models. The purpose of the paper is to study the feasibility of generating synthetic data points of temporal nature towards this end. A general approach named DAuGAN (Data Augmentation using Generative Adversarial Networks) is presented for identifying poorly represented sections of a time series, studying the synthesis and integration of new data points, and performance improvement on a benchmark machine learning model. The problem is studied and applied in the domain of algorithmic trading, whose constraints are presented and taken into consideration. The experimental results highlight an improvement in performance on a benchmark reinforcement learning agent trained on a dataset enhanced with DAuGAN to trade a financial instrument.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/7877590</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Benchmarks ; Data augmentation ; Data points ; Data science ; Datasets ; Expected values ; Feasibility studies ; Generative adversarial networks ; Machine learning ; Neural networks ; Random variables ; Time series</subject><ispartof>Scientific programming, 2021-10, Vol.2021, p.1-13</ispartof><rights>Copyright © 2021 Andrei Bratu and Gabriela Czibula.</rights><rights>Copyright © 2021 Andrei Bratu and Gabriela Czibula. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-7ec993381d06f749725f7bec8487c07f6301348184e6e1f84cc7001eacb47f123</cites><orcidid>0000-0003-0265-1221 ; 0000-0001-7852-681X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Liong, Sze-Teng</contributor><contributor>Sze-Teng Liong</contributor><creatorcontrib>Bratu, Andrei</creatorcontrib><creatorcontrib>Czibula, Gabriela</creatorcontrib><title>DAuGAN: An Approach for Augmenting Time Series Imbalanced Datasets via Latent Space Sampling Using Adversarial Techniques</title><title>Scientific programming</title><description>Data augmentation is a commonly used technique in data science for improving the robustness and performance of machine learning models. The purpose of the paper is to study the feasibility of generating synthetic data points of temporal nature towards this end. A general approach named DAuGAN (Data Augmentation using Generative Adversarial Networks) is presented for identifying poorly represented sections of a time series, studying the synthesis and integration of new data points, and performance improvement on a benchmark machine learning model. The problem is studied and applied in the domain of algorithmic trading, whose constraints are presented and taken into consideration. The experimental results highlight an improvement in performance on a benchmark reinforcement learning agent trained on a dataset enhanced with DAuGAN to trade a financial instrument.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Data augmentation</subject><subject>Data points</subject><subject>Data science</subject><subject>Datasets</subject><subject>Expected values</subject><subject>Feasibility studies</subject><subject>Generative adversarial networks</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Random variables</subject><subject>Time series</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kDFPwzAQhS0EEqWw8QMsMUKondi1zRa1UJAqGNpKbJHrXFpXSRrspKj_HkftzHJ3w3fv6T2E7il5ppTzUUxiOhJSCK7IBRpQKXikqPq-DDfhMlIxY9foxvsdIVRSQgboOE27Wfr5gtMap03j9tpscbF3OO02FdStrTd4aSvAC3AWPP6o1rrUtYEcT3WrPbQeH6zGc90GGi8abQKrq6bsP1e-n2l-AOe1s7rESzDb2v504G_RVaFLD3fnPUSrt9fl5D2af80-Juk8MrFibSTAKJUkkuZkXAimRMwLsQYjmRSGiGKcEJowSSWDMdBCMmNESAfarJkoaJwM0cNJN4Trfdtst-9cHSyzmEtOVdBMAvV0oozbe--gyBpnK-2OGSVZX27Wl5udyw344wnf2jrXv_Z_-g92yXhj</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Bratu, Andrei</creator><creator>Czibula, Gabriela</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0265-1221</orcidid><orcidid>https://orcid.org/0000-0001-7852-681X</orcidid></search><sort><creationdate>20211012</creationdate><title>DAuGAN: An Approach for Augmenting Time Series Imbalanced Datasets via Latent Space Sampling Using Adversarial Techniques</title><author>Bratu, Andrei ; Czibula, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7ec993381d06f749725f7bec8487c07f6301348184e6e1f84cc7001eacb47f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Data augmentation</topic><topic>Data points</topic><topic>Data science</topic><topic>Datasets</topic><topic>Expected values</topic><topic>Feasibility studies</topic><topic>Generative adversarial networks</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Random variables</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bratu, Andrei</creatorcontrib><creatorcontrib>Czibula, Gabriela</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bratu, Andrei</au><au>Czibula, Gabriela</au><au>Liong, Sze-Teng</au><au>Sze-Teng Liong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DAuGAN: An Approach for Augmenting Time Series Imbalanced Datasets via Latent Space Sampling Using Adversarial Techniques</atitle><jtitle>Scientific programming</jtitle><date>2021-10-12</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Data augmentation is a commonly used technique in data science for improving the robustness and performance of machine learning models. The purpose of the paper is to study the feasibility of generating synthetic data points of temporal nature towards this end. A general approach named DAuGAN (Data Augmentation using Generative Adversarial Networks) is presented for identifying poorly represented sections of a time series, studying the synthesis and integration of new data points, and performance improvement on a benchmark machine learning model. The problem is studied and applied in the domain of algorithmic trading, whose constraints are presented and taken into consideration. The experimental results highlight an improvement in performance on a benchmark reinforcement learning agent trained on a dataset enhanced with DAuGAN to trade a financial instrument.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/7877590</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0265-1221</orcidid><orcidid>https://orcid.org/0000-0001-7852-681X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2021-10, Vol.2021, p.1-13
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2585194973
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Benchmarks
Data augmentation
Data points
Data science
Datasets
Expected values
Feasibility studies
Generative adversarial networks
Machine learning
Neural networks
Random variables
Time series
title DAuGAN: An Approach for Augmenting Time Series Imbalanced Datasets via Latent Space Sampling Using Adversarial Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DAuGAN:%20An%20Approach%20for%20Augmenting%20Time%20Series%20Imbalanced%20Datasets%20via%20Latent%20Space%20Sampling%20Using%20Adversarial%20Techniques&rft.jtitle=Scientific%20programming&rft.au=Bratu,%20Andrei&rft.date=2021-10-12&rft.volume=2021&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/7877590&rft_dat=%3Cproquest_cross%3E2585194973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585194973&rft_id=info:pmid/&rfr_iscdi=true