Plastic deformation treated as material flow through adjustable crystal lattice

Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2014-08, Vol.63 (1), p.12130
Hauptverfasser: Minakowski, P, Hron, J, Kratochvíl, J, Kružík, M, Málek, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12130
container_title IOP conference series. Materials Science and Engineering
container_volume 63
creator Minakowski, P
Hron, J
Kratochvíl, J
Kružík, M
Málek, J
description Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.
doi_str_mv 10.1088/1757-899X/63/1/012130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585059444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585059444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4aba355dcc9cdf19c939bb5249e3bf4fe76ec7214e73c5c9aca433358ae7196b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWKs_QQh4XjfZJJvkKMUvKNSDgrfwbjaxW9KmJlmk_94tFU8zDMMMPAjdUnJPiVI1lUJWSuvPumU1rQltKCNnaPafn_97RS_RVc4bQlrJOZmh1VuAXAaLe-dj2kIZ4g6X5KC4HkPGU-LSAAH7EH9wWac4fq0x9JsxF-iCwzYdJhdwgDLNuGt04SFkd_Onc_Tx9Pi-eKmWq-fXxcOysqxRpeLQAROit1bb3lNtNdNdJxquHes89062zsqGcieZFVaDBc4YEwqcpLrt2BzdnXb3KX6PLheziWPaTZemEUoQoTnnU0ucWjbFnJPzZp-GLaSDocQc2ZkjF3NkZFpmqDmxY7-4_mPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585059444</pqid></control><display><type>article</type><title>Plastic deformation treated as material flow through adjustable crystal lattice</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Minakowski, P ; Hron, J ; Kratochvíl, J ; Kružík, M ; Málek, J</creator><creatorcontrib>Minakowski, P ; Hron, J ; Kratochvíl, J ; Kružík, M ; Málek, J</creatorcontrib><description>Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/63/1/012130</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Anisotropy ; Boundary value problems ; Crystal lattices ; Crystallography ; Plastic deformation ; Plastic flow ; Single crystals ; Slip ; Velocity gradient ; Viscous fluids</subject><ispartof>IOP conference series. Materials Science and Engineering, 2014-08, Vol.63 (1), p.12130</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4aba355dcc9cdf19c939bb5249e3bf4fe76ec7214e73c5c9aca433358ae7196b3</citedby><cites>FETCH-LOGICAL-c328t-4aba355dcc9cdf19c939bb5249e3bf4fe76ec7214e73c5c9aca433358ae7196b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Minakowski, P</creatorcontrib><creatorcontrib>Hron, J</creatorcontrib><creatorcontrib>Kratochvíl, J</creatorcontrib><creatorcontrib>Kružík, M</creatorcontrib><creatorcontrib>Málek, J</creatorcontrib><title>Plastic deformation treated as material flow through adjustable crystal lattice</title><title>IOP conference series. Materials Science and Engineering</title><description>Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Boundary value problems</subject><subject>Crystal lattices</subject><subject>Crystallography</subject><subject>Plastic deformation</subject><subject>Plastic flow</subject><subject>Single crystals</subject><subject>Slip</subject><subject>Velocity gradient</subject><subject>Viscous fluids</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE1LAzEYhIMoWKs_QQh4XjfZJJvkKMUvKNSDgrfwbjaxW9KmJlmk_94tFU8zDMMMPAjdUnJPiVI1lUJWSuvPumU1rQltKCNnaPafn_97RS_RVc4bQlrJOZmh1VuAXAaLe-dj2kIZ4g6X5KC4HkPGU-LSAAH7EH9wWac4fq0x9JsxF-iCwzYdJhdwgDLNuGt04SFkd_Onc_Tx9Pi-eKmWq-fXxcOysqxRpeLQAROit1bb3lNtNdNdJxquHes89062zsqGcieZFVaDBc4YEwqcpLrt2BzdnXb3KX6PLheziWPaTZemEUoQoTnnU0ucWjbFnJPzZp-GLaSDocQc2ZkjF3NkZFpmqDmxY7-4_mPQ</recordid><startdate>20140808</startdate><enddate>20140808</enddate><creator>Minakowski, P</creator><creator>Hron, J</creator><creator>Kratochvíl, J</creator><creator>Kružík, M</creator><creator>Málek, J</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140808</creationdate><title>Plastic deformation treated as material flow through adjustable crystal lattice</title><author>Minakowski, P ; Hron, J ; Kratochvíl, J ; Kružík, M ; Málek, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4aba355dcc9cdf19c939bb5249e3bf4fe76ec7214e73c5c9aca433358ae7196b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Boundary value problems</topic><topic>Crystal lattices</topic><topic>Crystallography</topic><topic>Plastic deformation</topic><topic>Plastic flow</topic><topic>Single crystals</topic><topic>Slip</topic><topic>Velocity gradient</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minakowski, P</creatorcontrib><creatorcontrib>Hron, J</creatorcontrib><creatorcontrib>Kratochvíl, J</creatorcontrib><creatorcontrib>Kružík, M</creatorcontrib><creatorcontrib>Málek, J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minakowski, P</au><au>Hron, J</au><au>Kratochvíl, J</au><au>Kružík, M</au><au>Málek, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic deformation treated as material flow through adjustable crystal lattice</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2014-08-08</date><risdate>2014</risdate><volume>63</volume><issue>1</issue><spage>12130</spage><pages>12130-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/63/1/012130</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2014-08, Vol.63 (1), p.12130
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2585059444
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Algorithms
Anisotropy
Boundary value problems
Crystal lattices
Crystallography
Plastic deformation
Plastic flow
Single crystals
Slip
Velocity gradient
Viscous fluids
title Plastic deformation treated as material flow through adjustable crystal lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20deformation%20treated%20as%20material%20flow%20through%20adjustable%20crystal%20lattice&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Minakowski,%20P&rft.date=2014-08-08&rft.volume=63&rft.issue=1&rft.spage=12130&rft.pages=12130-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/63/1/012130&rft_dat=%3Cproquest_cross%3E2585059444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585059444&rft_id=info:pmid/&rfr_iscdi=true