Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating

•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2021-12, Vol.153, p.106500, Article 106500
Hauptverfasser: Han, Lei, Zheng, Songwang, Tao, Min, Fei, Chengwei, Hu, Yan, Huang, Bo, Yuan, Liuyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106500
container_title International journal of fatigue
container_volume 153
creator Han, Lei
Zheng, Songwang
Tao, Min
Fei, Chengwei
Hu, Yan
Huang, Bo
Yuan, Liuyin
description •The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades. The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades.
doi_str_mv 10.1016/j.ijfatigue.2021.106500
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584777859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321003583</els_id><sourcerecordid>2584777859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</originalsourceid><addsrcrecordid>eNqFUEtLxDAQDqLg-vgNBjx3TdJH2qOILxA9qOeQJpPdqW26Ju2K_nojK149Dcz3mPk-Qs44W3LGq4tuiZ3TE65mWAomeNpWJWN7ZMFr2WR5UYp9smC8EBnnIj8kRzF2jLGGyXJBts8QtmiAWj3oFdABzFp7jAPV3lL0EwSnE2yCNm_oV7SFtd7iGOjo6CNmrY5gaZw3EHTfj590mkOLHmjbawuRfuC0prqfB_T4lZhmTK_61Qk5cLqPcPo7j8nrzfXL1V328HR7f3X5kJm8yKcMXGWgsk0BZcrKbNtyzozmrCygKuqq5RIaYRwvnNAm59w1rrKyltKIBIr8mJzvfDdhfJ8hTqob5-DTSSXKupBS1mWTWHLHMmGMMYBTm4CDDp-KM_VTsurUX8nqp2S1KzkpL3dKSCG2CEFFg-ANWAxgJmVH_NfjGwBOi3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584777859</pqid></control><display><type>article</type><title>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</title><source>Access via ScienceDirect (Elsevier)</source><creator>Han, Lei ; Zheng, Songwang ; Tao, Min ; Fei, Chengwei ; Hu, Yan ; Huang, Bo ; Yuan, Liuyin</creator><creatorcontrib>Han, Lei ; Zheng, Songwang ; Tao, Min ; Fei, Chengwei ; Hu, Yan ; Huang, Bo ; Yuan, Liuyin</creatorcontrib><description>•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades. The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106500</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminized coating ; Aluminizing ; Crack propagation ; Damage ; Fatigue cracking ; Fatigue failure ; Fracture mechanics ; Grain boundaries ; Materials fatigue ; Morphology ; Ni-based superalloy ; Nickel base alloys ; Service damage mechanism ; Superalloys ; Turbine blade ; Turbine blades</subject><ispartof>International journal of fatigue, 2021-12, Vol.153, p.106500, Article 106500</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</citedby><cites>FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</cites><orcidid>0000-0001-5333-1055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2021.106500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Zheng, Songwang</creatorcontrib><creatorcontrib>Tao, Min</creatorcontrib><creatorcontrib>Fei, Chengwei</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Yuan, Liuyin</creatorcontrib><title>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</title><title>International journal of fatigue</title><description>•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades. The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades.</description><subject>Aluminized coating</subject><subject>Aluminizing</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Fatigue cracking</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Materials fatigue</subject><subject>Morphology</subject><subject>Ni-based superalloy</subject><subject>Nickel base alloys</subject><subject>Service damage mechanism</subject><subject>Superalloys</subject><subject>Turbine blade</subject><subject>Turbine blades</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLxDAQDqLg-vgNBjx3TdJH2qOILxA9qOeQJpPdqW26Ju2K_nojK149Dcz3mPk-Qs44W3LGq4tuiZ3TE65mWAomeNpWJWN7ZMFr2WR5UYp9smC8EBnnIj8kRzF2jLGGyXJBts8QtmiAWj3oFdABzFp7jAPV3lL0EwSnE2yCNm_oV7SFtd7iGOjo6CNmrY5gaZw3EHTfj590mkOLHmjbawuRfuC0prqfB_T4lZhmTK_61Qk5cLqPcPo7j8nrzfXL1V328HR7f3X5kJm8yKcMXGWgsk0BZcrKbNtyzozmrCygKuqq5RIaYRwvnNAm59w1rrKyltKIBIr8mJzvfDdhfJ8hTqob5-DTSSXKupBS1mWTWHLHMmGMMYBTm4CDDp-KM_VTsurUX8nqp2S1KzkpL3dKSCG2CEFFg-ANWAxgJmVH_NfjGwBOi3Q</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Han, Lei</creator><creator>Zheng, Songwang</creator><creator>Tao, Min</creator><creator>Fei, Chengwei</creator><creator>Hu, Yan</creator><creator>Huang, Bo</creator><creator>Yuan, Liuyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid></search><sort><creationdate>202112</creationdate><title>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</title><author>Han, Lei ; Zheng, Songwang ; Tao, Min ; Fei, Chengwei ; Hu, Yan ; Huang, Bo ; Yuan, Liuyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminized coating</topic><topic>Aluminizing</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Fatigue cracking</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Materials fatigue</topic><topic>Morphology</topic><topic>Ni-based superalloy</topic><topic>Nickel base alloys</topic><topic>Service damage mechanism</topic><topic>Superalloys</topic><topic>Turbine blade</topic><topic>Turbine blades</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Zheng, Songwang</creatorcontrib><creatorcontrib>Tao, Min</creatorcontrib><creatorcontrib>Fei, Chengwei</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Yuan, Liuyin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lei</au><au>Zheng, Songwang</au><au>Tao, Min</au><au>Fei, Chengwei</au><au>Hu, Yan</au><au>Huang, Bo</au><au>Yuan, Liuyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</atitle><jtitle>International journal of fatigue</jtitle><date>2021-12</date><risdate>2021</risdate><volume>153</volume><spage>106500</spage><pages>106500-</pages><artnum>106500</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades. The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106500</doi><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2021-12, Vol.153, p.106500, Article 106500
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2584777859
source Access via ScienceDirect (Elsevier)
subjects Aluminized coating
Aluminizing
Crack propagation
Damage
Fatigue cracking
Fatigue failure
Fracture mechanics
Grain boundaries
Materials fatigue
Morphology
Ni-based superalloy
Nickel base alloys
Service damage mechanism
Superalloys
Turbine blade
Turbine blades
title Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Service%20damage%20mechanism%20and%20interface%20cracking%20behavior%20of%20Ni-based%20superalloy%20turbine%20blades%20with%20aluminized%20coating&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Han,%20Lei&rft.date=2021-12&rft.volume=153&rft.spage=106500&rft.pages=106500-&rft.artnum=106500&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106500&rft_dat=%3Cproquest_cross%3E2584777859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584777859&rft_id=info:pmid/&rft_els_id=S0142112321003583&rfr_iscdi=true