Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating
•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional p...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2021-12, Vol.153, p.106500, Article 106500 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106500 |
container_title | International journal of fatigue |
container_volume | 153 |
creator | Han, Lei Zheng, Songwang Tao, Min Fei, Chengwei Hu, Yan Huang, Bo Yuan, Liuyin |
description | •The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades.
The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades. |
doi_str_mv | 10.1016/j.ijfatigue.2021.106500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584777859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321003583</els_id><sourcerecordid>2584777859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</originalsourceid><addsrcrecordid>eNqFUEtLxDAQDqLg-vgNBjx3TdJH2qOILxA9qOeQJpPdqW26Ju2K_nojK149Dcz3mPk-Qs44W3LGq4tuiZ3TE65mWAomeNpWJWN7ZMFr2WR5UYp9smC8EBnnIj8kRzF2jLGGyXJBts8QtmiAWj3oFdABzFp7jAPV3lL0EwSnE2yCNm_oV7SFtd7iGOjo6CNmrY5gaZw3EHTfj590mkOLHmjbawuRfuC0prqfB_T4lZhmTK_61Qk5cLqPcPo7j8nrzfXL1V328HR7f3X5kJm8yKcMXGWgsk0BZcrKbNtyzozmrCygKuqq5RIaYRwvnNAm59w1rrKyltKIBIr8mJzvfDdhfJ8hTqob5-DTSSXKupBS1mWTWHLHMmGMMYBTm4CDDp-KM_VTsurUX8nqp2S1KzkpL3dKSCG2CEFFg-ANWAxgJmVH_NfjGwBOi3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584777859</pqid></control><display><type>article</type><title>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</title><source>Access via ScienceDirect (Elsevier)</source><creator>Han, Lei ; Zheng, Songwang ; Tao, Min ; Fei, Chengwei ; Hu, Yan ; Huang, Bo ; Yuan, Liuyin</creator><creatorcontrib>Han, Lei ; Zheng, Songwang ; Tao, Min ; Fei, Chengwei ; Hu, Yan ; Huang, Bo ; Yuan, Liuyin</creatorcontrib><description>•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades.
The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106500</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminized coating ; Aluminizing ; Crack propagation ; Damage ; Fatigue cracking ; Fatigue failure ; Fracture mechanics ; Grain boundaries ; Materials fatigue ; Morphology ; Ni-based superalloy ; Nickel base alloys ; Service damage mechanism ; Superalloys ; Turbine blade ; Turbine blades</subject><ispartof>International journal of fatigue, 2021-12, Vol.153, p.106500, Article 106500</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</citedby><cites>FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</cites><orcidid>0000-0001-5333-1055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2021.106500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Zheng, Songwang</creatorcontrib><creatorcontrib>Tao, Min</creatorcontrib><creatorcontrib>Fei, Chengwei</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Yuan, Liuyin</creatorcontrib><title>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</title><title>International journal of fatigue</title><description>•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades.
The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades.</description><subject>Aluminized coating</subject><subject>Aluminizing</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Fatigue cracking</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Materials fatigue</subject><subject>Morphology</subject><subject>Ni-based superalloy</subject><subject>Nickel base alloys</subject><subject>Service damage mechanism</subject><subject>Superalloys</subject><subject>Turbine blade</subject><subject>Turbine blades</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLxDAQDqLg-vgNBjx3TdJH2qOILxA9qOeQJpPdqW26Ju2K_nojK149Dcz3mPk-Qs44W3LGq4tuiZ3TE65mWAomeNpWJWN7ZMFr2WR5UYp9smC8EBnnIj8kRzF2jLGGyXJBts8QtmiAWj3oFdABzFp7jAPV3lL0EwSnE2yCNm_oV7SFtd7iGOjo6CNmrY5gaZw3EHTfj590mkOLHmjbawuRfuC0prqfB_T4lZhmTK_61Qk5cLqPcPo7j8nrzfXL1V328HR7f3X5kJm8yKcMXGWgsk0BZcrKbNtyzozmrCygKuqq5RIaYRwvnNAm59w1rrKyltKIBIr8mJzvfDdhfJ8hTqob5-DTSSXKupBS1mWTWHLHMmGMMYBTm4CDDp-KM_VTsurUX8nqp2S1KzkpL3dKSCG2CEFFg-ANWAxgJmVH_NfjGwBOi3Q</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Han, Lei</creator><creator>Zheng, Songwang</creator><creator>Tao, Min</creator><creator>Fei, Chengwei</creator><creator>Hu, Yan</creator><creator>Huang, Bo</creator><creator>Yuan, Liuyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid></search><sort><creationdate>202112</creationdate><title>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</title><author>Han, Lei ; Zheng, Songwang ; Tao, Min ; Fei, Chengwei ; Hu, Yan ; Huang, Bo ; Yuan, Liuyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-ef6ce6d94e51010dbb110ca1054e6486b17e92cf14f2ac311f9f6d7877c26b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminized coating</topic><topic>Aluminizing</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Fatigue cracking</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Materials fatigue</topic><topic>Morphology</topic><topic>Ni-based superalloy</topic><topic>Nickel base alloys</topic><topic>Service damage mechanism</topic><topic>Superalloys</topic><topic>Turbine blade</topic><topic>Turbine blades</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Zheng, Songwang</creatorcontrib><creatorcontrib>Tao, Min</creatorcontrib><creatorcontrib>Fei, Chengwei</creatorcontrib><creatorcontrib>Hu, Yan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Yuan, Liuyin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lei</au><au>Zheng, Songwang</au><au>Tao, Min</au><au>Fei, Chengwei</au><au>Hu, Yan</au><au>Huang, Bo</au><au>Yuan, Liuyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating</atitle><jtitle>International journal of fatigue</jtitle><date>2021-12</date><risdate>2021</risdate><volume>153</volume><spage>106500</spage><pages>106500-</pages><artnum>106500</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The failure of aluminized turbine blade is mainly induced by the cracking at the interface.•Evident cross-sectional delamination develops on the turbine blade surface after aluminizing.•Interdiffusion zone is formed by the mutual diffusions of Al and alloying elements.•Large amount of directional penetrations of σ phases in the substrate diffusion zone.•Interaction of pores, carbides and σ phases leads to the interfacial cracking of aluminized blades.
The service damage mechanism of K403 Ni-based superalloy turbine blade with the aluminized coating are investigated systematically. Fracture morphologies are inspected with a failure event, and the microscopic damage mechanisms are explored based on the aluminized blades with different operation times. It concludes that the formation of massive pores, aggregation of bulk carbides, coarsening and breaking of σ phases, development of continuous γ′ film, etc, lead to the multi-source fatigue cracking at the interface, with the grain boundaries and Kirkendall non-contact areas as the propagation channels, resulting in the rapid fatigue failure and significant life reduction of aluminized turbine blades.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106500</doi><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2021-12, Vol.153, p.106500, Article 106500 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_journals_2584777859 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminized coating Aluminizing Crack propagation Damage Fatigue cracking Fatigue failure Fracture mechanics Grain boundaries Materials fatigue Morphology Ni-based superalloy Nickel base alloys Service damage mechanism Superalloys Turbine blade Turbine blades |
title | Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Service%20damage%20mechanism%20and%20interface%20cracking%20behavior%20of%20Ni-based%20superalloy%20turbine%20blades%20with%20aluminized%20coating&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Han,%20Lei&rft.date=2021-12&rft.volume=153&rft.spage=106500&rft.pages=106500-&rft.artnum=106500&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106500&rft_dat=%3Cproquest_cross%3E2584777859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584777859&rft_id=info:pmid/&rft_els_id=S0142112321003583&rfr_iscdi=true |