Short proofs on the structure of general partition, equistable and triangle graphs

While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2021-11, Vol.303, p.8-13
Hauptverfasser: Cerioli, Márcia R., Martins, Taísa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 8
container_title Discrete Applied Mathematics
container_volume 303
creator Cerioli, Márcia R.
Martins, Taísa
description While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs. In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature.
doi_str_mv 10.1016/j.dam.2020.09.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584777646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20304273</els_id><sourcerecordid>2584777646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2229547133e41d5e19f745b6c59b7f3da53a7a4d6c23db75bf56a294485b0b203</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcBt7YmaZNMcSWDLxgQfIC7kCa3MykzTSdJBf-9kXHt6nLgnHMPH0KXlJSUUHHTl1bvSkYYKUlTEiKP0IwuJCuElPQYzbJHFIwuPk_RWYw9IYRmNUOvbxsfEh6D913EfsBpAzimMJk0BcC-w2sYIOgtHnVILjk_XGPYTy4m3W4B68HiFJwe1lmsgx438RyddHob4eLvztHHw_378qlYvTw-L-9WhWFSpoIx1vBa0qqCmloOtOlkzVtheNPKrrKaV1rq2grDKttK3nZcaNbU9YK3pGWkmqOrQ28ev58gJtX7KQz5pWJ8UUspRS2yix5cJvgYA3RqDG6nw7eiRP2iU73K6NQvOkUaldHlzO0hA3n-l4OgonEwGLAugEnKevdP-gdKlnZp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584777646</pqid></control><display><type>article</type><title>Short proofs on the structure of general partition, equistable and triangle graphs</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Cerioli, Márcia R. ; Martins, Taísa</creator><creatorcontrib>Cerioli, Márcia R. ; Martins, Taísa</creatorcontrib><description>While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs. In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.09.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Combinatorial analysis ; Equistable graph ; Equivalence ; General partition graph ; Graphs ; Inclusions ; Planar graph ; Triangle condition ; Triangle graph</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.8-13</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-2229547133e41d5e19f745b6c59b7f3da53a7a4d6c23db75bf56a294485b0b203</cites><orcidid>0000-0003-3712-7470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2020.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cerioli, Márcia R.</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><title>Short proofs on the structure of general partition, equistable and triangle graphs</title><title>Discrete Applied Mathematics</title><description>While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs. In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature.</description><subject>Combinatorial analysis</subject><subject>Equistable graph</subject><subject>Equivalence</subject><subject>General partition graph</subject><subject>Graphs</subject><subject>Inclusions</subject><subject>Planar graph</subject><subject>Triangle condition</subject><subject>Triangle graph</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcBt7YmaZNMcSWDLxgQfIC7kCa3MykzTSdJBf-9kXHt6nLgnHMPH0KXlJSUUHHTl1bvSkYYKUlTEiKP0IwuJCuElPQYzbJHFIwuPk_RWYw9IYRmNUOvbxsfEh6D913EfsBpAzimMJk0BcC-w2sYIOgtHnVILjk_XGPYTy4m3W4B68HiFJwe1lmsgx438RyddHob4eLvztHHw_378qlYvTw-L-9WhWFSpoIx1vBa0qqCmloOtOlkzVtheNPKrrKaV1rq2grDKttK3nZcaNbU9YK3pGWkmqOrQ28ev58gJtX7KQz5pWJ8UUspRS2yix5cJvgYA3RqDG6nw7eiRP2iU73K6NQvOkUaldHlzO0hA3n-l4OgonEwGLAugEnKevdP-gdKlnZp</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Cerioli, Márcia R.</creator><creator>Martins, Taísa</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3712-7470</orcidid></search><sort><creationdate>20211115</creationdate><title>Short proofs on the structure of general partition, equistable and triangle graphs</title><author>Cerioli, Márcia R. ; Martins, Taísa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2229547133e41d5e19f745b6c59b7f3da53a7a4d6c23db75bf56a294485b0b203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorial analysis</topic><topic>Equistable graph</topic><topic>Equivalence</topic><topic>General partition graph</topic><topic>Graphs</topic><topic>Inclusions</topic><topic>Planar graph</topic><topic>Triangle condition</topic><topic>Triangle graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerioli, Márcia R.</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerioli, Márcia R.</au><au>Martins, Taísa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short proofs on the structure of general partition, equistable and triangle graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>8</spage><epage>13</epage><pages>8-13</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs. In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.09.007</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3712-7470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2021-11, Vol.303, p.8-13
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2584777646
source ScienceDirect Freedom Collection (Elsevier)
subjects Combinatorial analysis
Equistable graph
Equivalence
General partition graph
Graphs
Inclusions
Planar graph
Triangle condition
Triangle graph
title Short proofs on the structure of general partition, equistable and triangle graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20proofs%20on%20the%20structure%20of%20general%20partition,%20equistable%20and%20triangle%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Cerioli,%20M%C3%A1rcia%20R.&rft.date=2021-11-15&rft.volume=303&rft.spage=8&rft.epage=13&rft.pages=8-13&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.09.007&rft_dat=%3Cproquest_cross%3E2584777646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584777646&rft_id=info:pmid/&rft_els_id=S0166218X20304273&rfr_iscdi=true