Short proofs on the structure of general partition, equistable and triangle graphs
While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon s...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2021-11, Vol.303, p.8-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 8 |
container_title | Discrete Applied Mathematics |
container_volume | 303 |
creator | Cerioli, Márcia R. Martins, Taísa |
description | While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs.
In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature. |
doi_str_mv | 10.1016/j.dam.2020.09.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584777646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20304273</els_id><sourcerecordid>2584777646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2229547133e41d5e19f745b6c59b7f3da53a7a4d6c23db75bf56a294485b0b203</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcBt7YmaZNMcSWDLxgQfIC7kCa3MykzTSdJBf-9kXHt6nLgnHMPH0KXlJSUUHHTl1bvSkYYKUlTEiKP0IwuJCuElPQYzbJHFIwuPk_RWYw9IYRmNUOvbxsfEh6D913EfsBpAzimMJk0BcC-w2sYIOgtHnVILjk_XGPYTy4m3W4B68HiFJwe1lmsgx438RyddHob4eLvztHHw_378qlYvTw-L-9WhWFSpoIx1vBa0qqCmloOtOlkzVtheNPKrrKaV1rq2grDKttK3nZcaNbU9YK3pGWkmqOrQ28ev58gJtX7KQz5pWJ8UUspRS2yix5cJvgYA3RqDG6nw7eiRP2iU73K6NQvOkUaldHlzO0hA3n-l4OgonEwGLAugEnKevdP-gdKlnZp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584777646</pqid></control><display><type>article</type><title>Short proofs on the structure of general partition, equistable and triangle graphs</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Cerioli, Márcia R. ; Martins, Taísa</creator><creatorcontrib>Cerioli, Márcia R. ; Martins, Taísa</creatorcontrib><description>While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs.
In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.09.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Combinatorial analysis ; Equistable graph ; Equivalence ; General partition graph ; Graphs ; Inclusions ; Planar graph ; Triangle condition ; Triangle graph</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.8-13</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-2229547133e41d5e19f745b6c59b7f3da53a7a4d6c23db75bf56a294485b0b203</cites><orcidid>0000-0003-3712-7470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2020.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cerioli, Márcia R.</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><title>Short proofs on the structure of general partition, equistable and triangle graphs</title><title>Discrete Applied Mathematics</title><description>While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs.
In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature.</description><subject>Combinatorial analysis</subject><subject>Equistable graph</subject><subject>Equivalence</subject><subject>General partition graph</subject><subject>Graphs</subject><subject>Inclusions</subject><subject>Planar graph</subject><subject>Triangle condition</subject><subject>Triangle graph</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcBt7YmaZNMcSWDLxgQfIC7kCa3MykzTSdJBf-9kXHt6nLgnHMPH0KXlJSUUHHTl1bvSkYYKUlTEiKP0IwuJCuElPQYzbJHFIwuPk_RWYw9IYRmNUOvbxsfEh6D913EfsBpAzimMJk0BcC-w2sYIOgtHnVILjk_XGPYTy4m3W4B68HiFJwe1lmsgx438RyddHob4eLvztHHw_378qlYvTw-L-9WhWFSpoIx1vBa0qqCmloOtOlkzVtheNPKrrKaV1rq2grDKttK3nZcaNbU9YK3pGWkmqOrQ28ev58gJtX7KQz5pWJ8UUspRS2yix5cJvgYA3RqDG6nw7eiRP2iU73K6NQvOkUaldHlzO0hA3n-l4OgonEwGLAugEnKevdP-gdKlnZp</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Cerioli, Márcia R.</creator><creator>Martins, Taísa</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3712-7470</orcidid></search><sort><creationdate>20211115</creationdate><title>Short proofs on the structure of general partition, equistable and triangle graphs</title><author>Cerioli, Márcia R. ; Martins, Taísa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2229547133e41d5e19f745b6c59b7f3da53a7a4d6c23db75bf56a294485b0b203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorial analysis</topic><topic>Equistable graph</topic><topic>Equivalence</topic><topic>General partition graph</topic><topic>Graphs</topic><topic>Inclusions</topic><topic>Planar graph</topic><topic>Triangle condition</topic><topic>Triangle graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerioli, Márcia R.</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerioli, Márcia R.</au><au>Martins, Taísa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short proofs on the structure of general partition, equistable and triangle graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>8</spage><epage>13</epage><pages>8-13</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>While presenting a combinatorial point of view to the class of equistable graphs, Miklavič and Milanič pointed out the inclusions among the classes of equistable, general partition and triangle graphs. Orlin conjectured that the first two classes were equivalent, but in 2014, Milanič and Trotignon showed that the three classes are all distinct, leading to the following hierarchy: general partition graphs ⊂ equistable graphs ⊂ triangle graphs.
In this paper, we solve an open problem from Anbeek et al. (1997) by showing that all the above classes are equivalent when restricted to planar graphs. Additionally, we present short proofs on some structural properties of the general partition, equistable and triangle classes. In particular, we show that the general partition and triangle classes are both closed under the operations of substitution, induction and contraction of modules which allow us to recover several results in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.09.007</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3712-7470</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2021-11, Vol.303, p.8-13 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2584777646 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Combinatorial analysis Equistable graph Equivalence General partition graph Graphs Inclusions Planar graph Triangle condition Triangle graph |
title | Short proofs on the structure of general partition, equistable and triangle graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20proofs%20on%20the%20structure%20of%20general%20partition,%20equistable%20and%20triangle%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Cerioli,%20M%C3%A1rcia%20R.&rft.date=2021-11-15&rft.volume=303&rft.spage=8&rft.epage=13&rft.pages=8-13&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.09.007&rft_dat=%3Cproquest_cross%3E2584777646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584777646&rft_id=info:pmid/&rft_els_id=S0166218X20304273&rfr_iscdi=true |