On cut vertices and eigenvalues of character graphs of solvable groups
Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2021-11, Vol.303, p.86-93 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | Discrete Applied Mathematics |
container_volume | 303 |
creator | Hafezieh, Roghayeh Hosseinzadeh, Mohammad Ali Hossein-Zadeh, Samaneh Iranmanesh, Ali |
description | Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G). |
doi_str_mv | 10.1016/j.dam.2021.01.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584776608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X21000202</els_id><sourcerecordid>2584776608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSNsniSRa_YGEvCt5Cms7upnTbmrQF_72p61kYGObNezOPR8gt0AwoiPs6q8wxY5RBRudiZ2QBSrJUSAnnZBE5ImWgPi_JVQg1pZECakGet21ixyGZ0A_OYkhMWyXo9thOphnj3O0SezDe2AF9svemP_xioWsmUzYYoW7swzW52Jkm4M1fX5KP56f39Wu62b68rR83qeWsGFKmkFeFKHNmcmsV54JbIwFzDqJiKudyJSQUKypkKQtupF1hkYPiRVxBiXxJ7k53e999RXuDrrvRt_GlZoXKpRSCqsiCE8v6LgSPO917dzT-WwPVc1y61jEuPcel6Vwsah5OGoz2J4deB-uwtVg5j3bQVef-Uf8Azd1wkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584776608</pqid></control><display><type>article</type><title>On cut vertices and eigenvalues of character graphs of solvable groups</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hafezieh, Roghayeh ; Hosseinzadeh, Mohammad Ali ; Hossein-Zadeh, Samaneh ; Iranmanesh, Ali</creator><creatorcontrib>Hafezieh, Roghayeh ; Hosseinzadeh, Mohammad Ali ; Hossein-Zadeh, Samaneh ; Iranmanesh, Ali</creatorcontrib><description>Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2021.01.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; Character graph ; Cut vertex ; Eigenvalue ; Eigenvalues ; Graphs ; Group theory ; Lower bounds ; Prime numbers ; Solvable group ; Vertex sets</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.86-93</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</citedby><cites>FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</cites><orcidid>0000-0003-2639-9454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2021.01.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Hafezieh, Roghayeh</creatorcontrib><creatorcontrib>Hosseinzadeh, Mohammad Ali</creatorcontrib><creatorcontrib>Hossein-Zadeh, Samaneh</creatorcontrib><creatorcontrib>Iranmanesh, Ali</creatorcontrib><title>On cut vertices and eigenvalues of character graphs of solvable groups</title><title>Discrete Applied Mathematics</title><description>Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G).</description><subject>Apexes</subject><subject>Character graph</subject><subject>Cut vertex</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Lower bounds</subject><subject>Prime numbers</subject><subject>Solvable group</subject><subject>Vertex sets</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSNsniSRa_YGEvCt5Cms7upnTbmrQF_72p61kYGObNezOPR8gt0AwoiPs6q8wxY5RBRudiZ2QBSrJUSAnnZBE5ImWgPi_JVQg1pZECakGet21ixyGZ0A_OYkhMWyXo9thOphnj3O0SezDe2AF9svemP_xioWsmUzYYoW7swzW52Jkm4M1fX5KP56f39Wu62b68rR83qeWsGFKmkFeFKHNmcmsV54JbIwFzDqJiKudyJSQUKypkKQtupF1hkYPiRVxBiXxJ7k53e999RXuDrrvRt_GlZoXKpRSCqsiCE8v6LgSPO917dzT-WwPVc1y61jEuPcel6Vwsah5OGoz2J4deB-uwtVg5j3bQVef-Uf8Azd1wkw</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Hafezieh, Roghayeh</creator><creator>Hosseinzadeh, Mohammad Ali</creator><creator>Hossein-Zadeh, Samaneh</creator><creator>Iranmanesh, Ali</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2639-9454</orcidid></search><sort><creationdate>20211115</creationdate><title>On cut vertices and eigenvalues of character graphs of solvable groups</title><author>Hafezieh, Roghayeh ; Hosseinzadeh, Mohammad Ali ; Hossein-Zadeh, Samaneh ; Iranmanesh, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Character graph</topic><topic>Cut vertex</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Lower bounds</topic><topic>Prime numbers</topic><topic>Solvable group</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafezieh, Roghayeh</creatorcontrib><creatorcontrib>Hosseinzadeh, Mohammad Ali</creatorcontrib><creatorcontrib>Hossein-Zadeh, Samaneh</creatorcontrib><creatorcontrib>Iranmanesh, Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hafezieh, Roghayeh</au><au>Hosseinzadeh, Mohammad Ali</au><au>Hossein-Zadeh, Samaneh</au><au>Iranmanesh, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On cut vertices and eigenvalues of character graphs of solvable groups</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2021.01.012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2639-9454</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2021-11, Vol.303, p.86-93 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2584776608 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Apexes Character graph Cut vertex Eigenvalue Eigenvalues Graphs Group theory Lower bounds Prime numbers Solvable group Vertex sets |
title | On cut vertices and eigenvalues of character graphs of solvable groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20cut%20vertices%20and%20eigenvalues%20of%20character%20graphs%20of%20solvable%20groups&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Hafezieh,%20Roghayeh&rft.date=2021-11-15&rft.volume=303&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2021.01.012&rft_dat=%3Cproquest_cross%3E2584776608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584776608&rft_id=info:pmid/&rft_els_id=S0166218X21000202&rfr_iscdi=true |