On cut vertices and eigenvalues of character graphs of solvable groups

Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2021-11, Vol.303, p.86-93
Hauptverfasser: Hafezieh, Roghayeh, Hosseinzadeh, Mohammad Ali, Hossein-Zadeh, Samaneh, Iranmanesh, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue
container_start_page 86
container_title Discrete Applied Mathematics
container_volume 303
creator Hafezieh, Roghayeh
Hosseinzadeh, Mohammad Ali
Hossein-Zadeh, Samaneh
Iranmanesh, Ali
description Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G).
doi_str_mv 10.1016/j.dam.2021.01.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584776608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X21000202</els_id><sourcerecordid>2584776608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSNsniSRa_YGEvCt5Cms7upnTbmrQF_72p61kYGObNezOPR8gt0AwoiPs6q8wxY5RBRudiZ2QBSrJUSAnnZBE5ImWgPi_JVQg1pZECakGet21ixyGZ0A_OYkhMWyXo9thOphnj3O0SezDe2AF9svemP_xioWsmUzYYoW7swzW52Jkm4M1fX5KP56f39Wu62b68rR83qeWsGFKmkFeFKHNmcmsV54JbIwFzDqJiKudyJSQUKypkKQtupF1hkYPiRVxBiXxJ7k53e999RXuDrrvRt_GlZoXKpRSCqsiCE8v6LgSPO917dzT-WwPVc1y61jEuPcel6Vwsah5OGoz2J4deB-uwtVg5j3bQVef-Uf8Azd1wkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584776608</pqid></control><display><type>article</type><title>On cut vertices and eigenvalues of character graphs of solvable groups</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hafezieh, Roghayeh ; Hosseinzadeh, Mohammad Ali ; Hossein-Zadeh, Samaneh ; Iranmanesh, Ali</creator><creatorcontrib>Hafezieh, Roghayeh ; Hosseinzadeh, Mohammad Ali ; Hossein-Zadeh, Samaneh ; Iranmanesh, Ali</creatorcontrib><description>Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2021.01.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; Character graph ; Cut vertex ; Eigenvalue ; Eigenvalues ; Graphs ; Group theory ; Lower bounds ; Prime numbers ; Solvable group ; Vertex sets</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.86-93</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</citedby><cites>FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</cites><orcidid>0000-0003-2639-9454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2021.01.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Hafezieh, Roghayeh</creatorcontrib><creatorcontrib>Hosseinzadeh, Mohammad Ali</creatorcontrib><creatorcontrib>Hossein-Zadeh, Samaneh</creatorcontrib><creatorcontrib>Iranmanesh, Ali</creatorcontrib><title>On cut vertices and eigenvalues of character graphs of solvable groups</title><title>Discrete Applied Mathematics</title><description>Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G).</description><subject>Apexes</subject><subject>Character graph</subject><subject>Cut vertex</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Lower bounds</subject><subject>Prime numbers</subject><subject>Solvable group</subject><subject>Vertex sets</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSNsniSRa_YGEvCt5Cms7upnTbmrQF_72p61kYGObNezOPR8gt0AwoiPs6q8wxY5RBRudiZ2QBSrJUSAnnZBE5ImWgPi_JVQg1pZECakGet21ixyGZ0A_OYkhMWyXo9thOphnj3O0SezDe2AF9svemP_xioWsmUzYYoW7swzW52Jkm4M1fX5KP56f39Wu62b68rR83qeWsGFKmkFeFKHNmcmsV54JbIwFzDqJiKudyJSQUKypkKQtupF1hkYPiRVxBiXxJ7k53e999RXuDrrvRt_GlZoXKpRSCqsiCE8v6LgSPO917dzT-WwPVc1y61jEuPcel6Vwsah5OGoz2J4deB-uwtVg5j3bQVef-Uf8Azd1wkw</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Hafezieh, Roghayeh</creator><creator>Hosseinzadeh, Mohammad Ali</creator><creator>Hossein-Zadeh, Samaneh</creator><creator>Iranmanesh, Ali</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2639-9454</orcidid></search><sort><creationdate>20211115</creationdate><title>On cut vertices and eigenvalues of character graphs of solvable groups</title><author>Hafezieh, Roghayeh ; Hosseinzadeh, Mohammad Ali ; Hossein-Zadeh, Samaneh ; Iranmanesh, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-28e3d56b42a4cc83363ca71e4316d28437967159067b753a7c9e5418354371be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Character graph</topic><topic>Cut vertex</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Lower bounds</topic><topic>Prime numbers</topic><topic>Solvable group</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafezieh, Roghayeh</creatorcontrib><creatorcontrib>Hosseinzadeh, Mohammad Ali</creatorcontrib><creatorcontrib>Hossein-Zadeh, Samaneh</creatorcontrib><creatorcontrib>Iranmanesh, Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hafezieh, Roghayeh</au><au>Hosseinzadeh, Mohammad Ali</au><au>Hossein-Zadeh, Samaneh</au><au>Iranmanesh, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On cut vertices and eigenvalues of character graphs of solvable groups</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Given a finite group G, the character graph, denoted by Δ(G), for its irreducible character degrees is a graph with vertex set ρ(G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p,q} being an edge if there exists a non-linear χ∈Irr(G) whose degree is divisible by pq. In this paper, on one hand, we proceed by discussing the graphical shape of Δ(G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ(G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex and diameter 3. Furthermore, we study solvable groups whose character graphs have at most two distinct eigenvalues. Moreover, we investigate the solvable groups whose character graphs are regular with three distinct eigenvalues. In addition, we give some lower bounds for the number of edges of Δ(G).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2021.01.012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2639-9454</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2021-11, Vol.303, p.86-93
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2584776608
source ScienceDirect Journals (5 years ago - present)
subjects Apexes
Character graph
Cut vertex
Eigenvalue
Eigenvalues
Graphs
Group theory
Lower bounds
Prime numbers
Solvable group
Vertex sets
title On cut vertices and eigenvalues of character graphs of solvable groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20cut%20vertices%20and%20eigenvalues%20of%20character%20graphs%20of%20solvable%20groups&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Hafezieh,%20Roghayeh&rft.date=2021-11-15&rft.volume=303&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2021.01.012&rft_dat=%3Cproquest_cross%3E2584776608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584776608&rft_id=info:pmid/&rft_els_id=S0166218X21000202&rfr_iscdi=true