Oscillation Results Using Linearization of Quasi-Linear Second Order Delay Difference Equations
In this paper, the authors investigate the oscillatory behavior of quasilinear second order delay difference equations of the form Δ ( b ( n ) ( Δ u ( n ) ) α ) + p ( n ) u β ( n - σ ) = 0 . By obtaining new monotonic properties of the nonoscillatory solutions and using them to linearize the equatio...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2021-12, Vol.18 (6), Article 248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Mediterranean journal of mathematics |
container_volume | 18 |
creator | Kanagasabapathi, R. Selvarangam, S. Graef, J. R. Thandapani, E. |
description | In this paper, the authors investigate the oscillatory behavior of quasilinear second order delay difference equations of the form
Δ
(
b
(
n
)
(
Δ
u
(
n
)
)
α
)
+
p
(
n
)
u
β
(
n
-
σ
)
=
0
.
By obtaining new monotonic properties of the nonoscillatory solutions and using them to linearize the equation leads to new oscillation criteria. The criteria obtained improve existing ones in the literature. Two examples are included to show the importance of the main results. |
doi_str_mv | 10.1007/s00009-021-01920-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584749556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584749556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a47197c27fd77f99f0a89c99df12a64fe15df33eeba75e0ec2a71d51ad6d64c43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczTJJpvmKG39gELxo-cQk0lJWXfbZPdQf73brujNucww877vwIPQNaO3jFJ1l2lfmlDOCGWaUyJO0IiVJSVSSHH6O4vyHF3kvKGUa1bwETLL7GJV2TY2NX6F3FVtxqsc6zVexBpsil_DrQn4pbM5kmGN38A1tcfL5CHhGVR2j2cxBEhQO8DzXXe05Ut0FmyV4eqnj9HqYf4-fSKL5ePz9H5BXMF0S6xQTCvHVfBKBa0DtRPttPaBcVuKAEz6UBQAH1ZJoOC4VcxLZn3pS-FEMUY3Q-42NbsOcms2TZfq_qXhciKU0FKWvYoPKpeanBMEs03x06a9YdQcQJoBpOlBmiNIc4guBlPuxfUa0l_0P65vdQF3CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584749556</pqid></control><display><type>article</type><title>Oscillation Results Using Linearization of Quasi-Linear Second Order Delay Difference Equations</title><source>SpringerNature Journals</source><creator>Kanagasabapathi, R. ; Selvarangam, S. ; Graef, J. R. ; Thandapani, E.</creator><creatorcontrib>Kanagasabapathi, R. ; Selvarangam, S. ; Graef, J. R. ; Thandapani, E.</creatorcontrib><description>In this paper, the authors investigate the oscillatory behavior of quasilinear second order delay difference equations of the form
Δ
(
b
(
n
)
(
Δ
u
(
n
)
)
α
)
+
p
(
n
)
u
β
(
n
-
σ
)
=
0
.
By obtaining new monotonic properties of the nonoscillatory solutions and using them to linearize the equation leads to new oscillation criteria. The criteria obtained improve existing ones in the literature. Two examples are included to show the importance of the main results.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-021-01920-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Criteria ; Difference equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mediterranean journal of mathematics, 2021-12, Vol.18 (6), Article 248</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a47197c27fd77f99f0a89c99df12a64fe15df33eeba75e0ec2a71d51ad6d64c43</citedby><cites>FETCH-LOGICAL-c319t-a47197c27fd77f99f0a89c99df12a64fe15df33eeba75e0ec2a71d51ad6d64c43</cites><orcidid>0000-0002-8149-4633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-021-01920-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-021-01920-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kanagasabapathi, R.</creatorcontrib><creatorcontrib>Selvarangam, S.</creatorcontrib><creatorcontrib>Graef, J. R.</creatorcontrib><creatorcontrib>Thandapani, E.</creatorcontrib><title>Oscillation Results Using Linearization of Quasi-Linear Second Order Delay Difference Equations</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>In this paper, the authors investigate the oscillatory behavior of quasilinear second order delay difference equations of the form
Δ
(
b
(
n
)
(
Δ
u
(
n
)
)
α
)
+
p
(
n
)
u
β
(
n
-
σ
)
=
0
.
By obtaining new monotonic properties of the nonoscillatory solutions and using them to linearize the equation leads to new oscillation criteria. The criteria obtained improve existing ones in the literature. Two examples are included to show the importance of the main results.</description><subject>Criteria</subject><subject>Difference equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczTJJpvmKG39gELxo-cQk0lJWXfbZPdQf73brujNucww877vwIPQNaO3jFJ1l2lfmlDOCGWaUyJO0IiVJSVSSHH6O4vyHF3kvKGUa1bwETLL7GJV2TY2NX6F3FVtxqsc6zVexBpsil_DrQn4pbM5kmGN38A1tcfL5CHhGVR2j2cxBEhQO8DzXXe05Ut0FmyV4eqnj9HqYf4-fSKL5ePz9H5BXMF0S6xQTCvHVfBKBa0DtRPttPaBcVuKAEz6UBQAH1ZJoOC4VcxLZn3pS-FEMUY3Q-42NbsOcms2TZfq_qXhciKU0FKWvYoPKpeanBMEs03x06a9YdQcQJoBpOlBmiNIc4guBlPuxfUa0l_0P65vdQF3CA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kanagasabapathi, R.</creator><creator>Selvarangam, S.</creator><creator>Graef, J. R.</creator><creator>Thandapani, E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8149-4633</orcidid></search><sort><creationdate>20211201</creationdate><title>Oscillation Results Using Linearization of Quasi-Linear Second Order Delay Difference Equations</title><author>Kanagasabapathi, R. ; Selvarangam, S. ; Graef, J. R. ; Thandapani, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a47197c27fd77f99f0a89c99df12a64fe15df33eeba75e0ec2a71d51ad6d64c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Criteria</topic><topic>Difference equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanagasabapathi, R.</creatorcontrib><creatorcontrib>Selvarangam, S.</creatorcontrib><creatorcontrib>Graef, J. R.</creatorcontrib><creatorcontrib>Thandapani, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanagasabapathi, R.</au><au>Selvarangam, S.</au><au>Graef, J. R.</au><au>Thandapani, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation Results Using Linearization of Quasi-Linear Second Order Delay Difference Equations</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><artnum>248</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>In this paper, the authors investigate the oscillatory behavior of quasilinear second order delay difference equations of the form
Δ
(
b
(
n
)
(
Δ
u
(
n
)
)
α
)
+
p
(
n
)
u
β
(
n
-
σ
)
=
0
.
By obtaining new monotonic properties of the nonoscillatory solutions and using them to linearize the equation leads to new oscillation criteria. The criteria obtained improve existing ones in the literature. Two examples are included to show the importance of the main results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-021-01920-4</doi><orcidid>https://orcid.org/0000-0002-8149-4633</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2021-12, Vol.18 (6), Article 248 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2584749556 |
source | SpringerNature Journals |
subjects | Criteria Difference equations Mathematical analysis Mathematics Mathematics and Statistics |
title | Oscillation Results Using Linearization of Quasi-Linear Second Order Delay Difference Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20Results%20Using%20Linearization%20of%20Quasi-Linear%20Second%20Order%20Delay%20Difference%20Equations&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Kanagasabapathi,%20R.&rft.date=2021-12-01&rft.volume=18&rft.issue=6&rft.artnum=248&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-021-01920-4&rft_dat=%3Cproquest_cross%3E2584749556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584749556&rft_id=info:pmid/&rfr_iscdi=true |