Simultaneous confidence bands for nonparametric regression with missing covariate data

We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2021-12, Vol.73 (6), p.1249-1279
Hauptverfasser: Cai, Li, Gu, Lijie, Wang, Qihua, Wang, Suojin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 6
container_start_page 1249
container_title Annals of the Institute of Statistical Mathematics
container_volume 73
creator Cai, Li
Gu, Lijie
Wang, Qihua
Wang, Suojin
description We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accurate simultaneous confidence band is constructed. The estimator for the regression function is shown to be oracally efficient in the sense that it is uniformly indistinguishable from that when the selection probabilities are known. Finite sample performance is examined via simulation studies which support our asymptotic theory. The proposed method is demonstrated via an analysis of a data set from the Canada 2010/2011 Youth Student Survey.
doi_str_mv 10.1007/s10463-021-00784-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584749555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584749555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-756b56c743655eb9ff8a92d33cb4e4e460615509a499a561b181091ee97b13773</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbpGmapQy-YMCFj21I27RmmCZj0ir-ezNWcCd3cTmXc86FD6FzCpcUQF4lCkXJCTBKsqwKIg7QggrJiALBDtECgAHh-XKMTlLaAABnnC3Q65Mbpu1ovA1Twk3wnWutbyyujW8T7kLEPvidiWawY3QNjraPNiUXPP504xseXBa-z9EPE50ZLW7NaE7RUWe2yZ797iV6ub15Xt2T9ePdw-p6TRpO1UikKGtRNrLgpRC2Vl1XGcVazpu6sHlKKKkQoEyhlBElrWlFQVFrlawpl5Iv0cXcu4vhfbJp1JswRZ9faiaqQhZKCJFdbHY1MaQUbad30Q0mfmkKes9Pz_x05qd_-Ol9iM-hlM2-t_Gv-p_UN7chcx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584749555</pqid></control><display><type>article</type><title>Simultaneous confidence bands for nonparametric regression with missing covariate data</title><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cai, Li ; Gu, Lijie ; Wang, Qihua ; Wang, Suojin</creator><creatorcontrib>Cai, Li ; Gu, Lijie ; Wang, Qihua ; Wang, Suojin</creatorcontrib><description>We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accurate simultaneous confidence band is constructed. The estimator for the regression function is shown to be oracally efficient in the sense that it is uniformly indistinguishable from that when the selection probabilities are known. Finite sample performance is examined via simulation studies which support our asymptotic theory. The proposed method is demonstrated via an analysis of a data set from the Canada 2010/2011 Youth Student Survey.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-021-00784-5</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Asymptotic methods ; Asymptotic properties ; Economics ; Finance ; Insurance ; Management ; Mathematics ; Mathematics and Statistics ; Nonparametric statistics ; Regression ; Statistical analysis ; Statistics ; Statistics for Business</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2021-12, Vol.73 (6), p.1249-1279</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2021</rights><rights>The Institute of Statistical Mathematics, Tokyo 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-756b56c743655eb9ff8a92d33cb4e4e460615509a499a561b181091ee97b13773</citedby><cites>FETCH-LOGICAL-c319t-756b56c743655eb9ff8a92d33cb4e4e460615509a499a561b181091ee97b13773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-021-00784-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-021-00784-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Cai, Li</creatorcontrib><creatorcontrib>Gu, Lijie</creatorcontrib><creatorcontrib>Wang, Qihua</creatorcontrib><creatorcontrib>Wang, Suojin</creatorcontrib><title>Simultaneous confidence bands for nonparametric regression with missing covariate data</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accurate simultaneous confidence band is constructed. The estimator for the regression function is shown to be oracally efficient in the sense that it is uniformly indistinguishable from that when the selection probabilities are known. Finite sample performance is examined via simulation studies which support our asymptotic theory. The proposed method is demonstrated via an analysis of a data set from the Canada 2010/2011 Youth Student Survey.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbpGmapQy-YMCFj21I27RmmCZj0ir-ezNWcCd3cTmXc86FD6FzCpcUQF4lCkXJCTBKsqwKIg7QggrJiALBDtECgAHh-XKMTlLaAABnnC3Q65Mbpu1ovA1Twk3wnWutbyyujW8T7kLEPvidiWawY3QNjraPNiUXPP504xseXBa-z9EPE50ZLW7NaE7RUWe2yZ797iV6ub15Xt2T9ePdw-p6TRpO1UikKGtRNrLgpRC2Vl1XGcVazpu6sHlKKKkQoEyhlBElrWlFQVFrlawpl5Iv0cXcu4vhfbJp1JswRZ9faiaqQhZKCJFdbHY1MaQUbad30Q0mfmkKes9Pz_x05qd_-Ol9iM-hlM2-t_Gv-p_UN7chcx4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cai, Li</creator><creator>Gu, Lijie</creator><creator>Wang, Qihua</creator><creator>Wang, Suojin</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211201</creationdate><title>Simultaneous confidence bands for nonparametric regression with missing covariate data</title><author>Cai, Li ; Gu, Lijie ; Wang, Qihua ; Wang, Suojin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-756b56c743655eb9ff8a92d33cb4e4e460615509a499a561b181091ee97b13773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Li</creatorcontrib><creatorcontrib>Gu, Lijie</creatorcontrib><creatorcontrib>Wang, Qihua</creatorcontrib><creatorcontrib>Wang, Suojin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Li</au><au>Gu, Lijie</au><au>Wang, Qihua</au><au>Wang, Suojin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous confidence bands for nonparametric regression with missing covariate data</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>73</volume><issue>6</issue><spage>1249</spage><epage>1279</epage><pages>1249-1279</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accurate simultaneous confidence band is constructed. The estimator for the regression function is shown to be oracally efficient in the sense that it is uniformly indistinguishable from that when the selection probabilities are known. Finite sample performance is examined via simulation studies which support our asymptotic theory. The proposed method is demonstrated via an analysis of a data set from the Canada 2010/2011 Youth Student Survey.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-021-00784-5</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-3157
ispartof Annals of the Institute of Statistical Mathematics, 2021-12, Vol.73 (6), p.1249-1279
issn 0020-3157
1572-9052
language eng
recordid cdi_proquest_journals_2584749555
source Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals
subjects Asymptotic methods
Asymptotic properties
Economics
Finance
Insurance
Management
Mathematics
Mathematics and Statistics
Nonparametric statistics
Regression
Statistical analysis
Statistics
Statistics for Business
title Simultaneous confidence bands for nonparametric regression with missing covariate data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20confidence%20bands%20for%20nonparametric%20regression%20with%20missing%20covariate%20data&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Cai,%20Li&rft.date=2021-12-01&rft.volume=73&rft.issue=6&rft.spage=1249&rft.epage=1279&rft.pages=1249-1279&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-021-00784-5&rft_dat=%3Cproquest_cross%3E2584749555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584749555&rft_id=info:pmid/&rfr_iscdi=true