Dynamics estimator based robust fault-tolerant control for VTOL UAVs trajectory tracking
•A robust passive fault-tolerant control strategy is proposed for the VTOL UAV trajectory tracking.•A first-order filter based dynamics estimator is developed to compensate for the external disturbances and fault signals.•A bounded command force is designed in the position control loop such that the...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2022-01, Vol.162, p.108062, Article 108062 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108062 |
container_title | Mechanical systems and signal processing |
container_volume | 162 |
creator | Xia, Kewei Chung, Wonmo Son, Hungsun |
description | •A robust passive fault-tolerant control strategy is proposed for the VTOL UAV trajectory tracking.•A first-order filter based dynamics estimator is developed to compensate for the external disturbances and fault signals.•A bounded command force is designed in the position control loop such that the non-singularity extraction of the command attitude is guaranteed.•The stability of the overall closed-loop system is analyzed by using hierarchical system stability theory.•Flight experiments on a quadrotor platform with comparisons are performed to validate the proposed control strategy.
This paper investigates the control issue of the trajectory tracking of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs) in the presence of partial propeller fault and external disturbance. In particular, a robust passive fault-tolerant control strategy is proposed by introducing a first-order filter based dynamics estimator. First, a bounded force command is exploited by employing a new smooth saturation function in the output of the estimator. A sufficient condition in terms of a specified parameter selection criteria is provided to ensure the non-singularity extraction of the command attitude. Then, a torque command is applied to the attitude loop tracking. Since there is merely one filter parameter involved in the dynamics estimator, the practical implementation and parameter tuning can be significantly simplified. Stability analysis indicates that the proposed control strategy guarantees the semi-globally ultimately bounded tracking of VTOL UAVs subject to partial propeller fault and external disturbance. Simulation and experiment results with comparison examples are performed to validate the effectiveness of the proposed strategy. Experimental results show that the proposed strategy achieves the trajectory tracking with a good performance (mean deviation 0.0074 m and standard deviation 0.1202 m) in the presence of 35% propeller fault and 4 m/s persistent wind disturbance. |
doi_str_mv | 10.1016/j.ymssp.2021.108062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584560889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327021004519</els_id><sourcerecordid>2584560889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-625e4126958ac8ae7fc5f66221a9d7484efc56b704d0b3adaa1b742abab7a4923</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFwscU6xHcdxDhyq8itV6qWtuFkbx0EJaVxsBylvj0s4c9rVaGZX3yB0S8mCEiru28V48P64YITRqEgi2BmaUVKIhDIqztGMSCmTlOXkEl153xJCCk7EDL0_jj0cGu2x8aE5QLAOl-BNhZ0tBx9wDUMXkmA746APWNs-ONvhOvr2280a75Z7j4OD1uiYHU-r_mz6j2t0UUPnzc3fnKPd89N29ZqsNy9vq-U60WkuQiJYZjhlosgkaAkmr3VWC8EYhaLKueQmCqLMCa9ImUIFQMucMyihzIEXLJ2ju-nu0dmvIUKo1g6ujy8VyyTPRCQvoiudXNpZ752p1dFFWjcqStSpQtWq3wrVqUI1VRhTD1PKRIDvxjjldWN6barGRVxV2ebf_A-rU3wc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584560889</pqid></control><display><type>article</type><title>Dynamics estimator based robust fault-tolerant control for VTOL UAVs trajectory tracking</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Xia, Kewei ; Chung, Wonmo ; Son, Hungsun</creator><creatorcontrib>Xia, Kewei ; Chung, Wonmo ; Son, Hungsun</creatorcontrib><description>•A robust passive fault-tolerant control strategy is proposed for the VTOL UAV trajectory tracking.•A first-order filter based dynamics estimator is developed to compensate for the external disturbances and fault signals.•A bounded command force is designed in the position control loop such that the non-singularity extraction of the command attitude is guaranteed.•The stability of the overall closed-loop system is analyzed by using hierarchical system stability theory.•Flight experiments on a quadrotor platform with comparisons are performed to validate the proposed control strategy.
This paper investigates the control issue of the trajectory tracking of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs) in the presence of partial propeller fault and external disturbance. In particular, a robust passive fault-tolerant control strategy is proposed by introducing a first-order filter based dynamics estimator. First, a bounded force command is exploited by employing a new smooth saturation function in the output of the estimator. A sufficient condition in terms of a specified parameter selection criteria is provided to ensure the non-singularity extraction of the command attitude. Then, a torque command is applied to the attitude loop tracking. Since there is merely one filter parameter involved in the dynamics estimator, the practical implementation and parameter tuning can be significantly simplified. Stability analysis indicates that the proposed control strategy guarantees the semi-globally ultimately bounded tracking of VTOL UAVs subject to partial propeller fault and external disturbance. Simulation and experiment results with comparison examples are performed to validate the effectiveness of the proposed strategy. Experimental results show that the proposed strategy achieves the trajectory tracking with a good performance (mean deviation 0.0074 m and standard deviation 0.1202 m) in the presence of 35% propeller fault and 4 m/s persistent wind disturbance.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2021.108062</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Attitudes ; Control stability ; Fault tolerance ; Fault-tolerant ; Non-singularity ; Parameters ; Robust control ; Stability analysis ; Tracking ; Trajectory control ; Trajectory tracking ; Unmanned aerial vehicles ; VTOL Unmanned aerial vehicles</subject><ispartof>Mechanical systems and signal processing, 2022-01, Vol.162, p.108062, Article 108062</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-625e4126958ac8ae7fc5f66221a9d7484efc56b704d0b3adaa1b742abab7a4923</citedby><cites>FETCH-LOGICAL-c376t-625e4126958ac8ae7fc5f66221a9d7484efc56b704d0b3adaa1b742abab7a4923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327021004519$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xia, Kewei</creatorcontrib><creatorcontrib>Chung, Wonmo</creatorcontrib><creatorcontrib>Son, Hungsun</creatorcontrib><title>Dynamics estimator based robust fault-tolerant control for VTOL UAVs trajectory tracking</title><title>Mechanical systems and signal processing</title><description>•A robust passive fault-tolerant control strategy is proposed for the VTOL UAV trajectory tracking.•A first-order filter based dynamics estimator is developed to compensate for the external disturbances and fault signals.•A bounded command force is designed in the position control loop such that the non-singularity extraction of the command attitude is guaranteed.•The stability of the overall closed-loop system is analyzed by using hierarchical system stability theory.•Flight experiments on a quadrotor platform with comparisons are performed to validate the proposed control strategy.
This paper investigates the control issue of the trajectory tracking of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs) in the presence of partial propeller fault and external disturbance. In particular, a robust passive fault-tolerant control strategy is proposed by introducing a first-order filter based dynamics estimator. First, a bounded force command is exploited by employing a new smooth saturation function in the output of the estimator. A sufficient condition in terms of a specified parameter selection criteria is provided to ensure the non-singularity extraction of the command attitude. Then, a torque command is applied to the attitude loop tracking. Since there is merely one filter parameter involved in the dynamics estimator, the practical implementation and parameter tuning can be significantly simplified. Stability analysis indicates that the proposed control strategy guarantees the semi-globally ultimately bounded tracking of VTOL UAVs subject to partial propeller fault and external disturbance. Simulation and experiment results with comparison examples are performed to validate the effectiveness of the proposed strategy. Experimental results show that the proposed strategy achieves the trajectory tracking with a good performance (mean deviation 0.0074 m and standard deviation 0.1202 m) in the presence of 35% propeller fault and 4 m/s persistent wind disturbance.</description><subject>Attitudes</subject><subject>Control stability</subject><subject>Fault tolerance</subject><subject>Fault-tolerant</subject><subject>Non-singularity</subject><subject>Parameters</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Tracking</subject><subject>Trajectory control</subject><subject>Trajectory tracking</subject><subject>Unmanned aerial vehicles</subject><subject>VTOL Unmanned aerial vehicles</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFwscU6xHcdxDhyq8itV6qWtuFkbx0EJaVxsBylvj0s4c9rVaGZX3yB0S8mCEiru28V48P64YITRqEgi2BmaUVKIhDIqztGMSCmTlOXkEl153xJCCk7EDL0_jj0cGu2x8aE5QLAOl-BNhZ0tBx9wDUMXkmA746APWNs-ONvhOvr2280a75Z7j4OD1uiYHU-r_mz6j2t0UUPnzc3fnKPd89N29ZqsNy9vq-U60WkuQiJYZjhlosgkaAkmr3VWC8EYhaLKueQmCqLMCa9ImUIFQMucMyihzIEXLJ2ju-nu0dmvIUKo1g6ujy8VyyTPRCQvoiudXNpZ752p1dFFWjcqStSpQtWq3wrVqUI1VRhTD1PKRIDvxjjldWN6barGRVxV2ebf_A-rU3wc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Xia, Kewei</creator><creator>Chung, Wonmo</creator><creator>Son, Hungsun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220101</creationdate><title>Dynamics estimator based robust fault-tolerant control for VTOL UAVs trajectory tracking</title><author>Xia, Kewei ; Chung, Wonmo ; Son, Hungsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-625e4126958ac8ae7fc5f66221a9d7484efc56b704d0b3adaa1b742abab7a4923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attitudes</topic><topic>Control stability</topic><topic>Fault tolerance</topic><topic>Fault-tolerant</topic><topic>Non-singularity</topic><topic>Parameters</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Tracking</topic><topic>Trajectory control</topic><topic>Trajectory tracking</topic><topic>Unmanned aerial vehicles</topic><topic>VTOL Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Kewei</creatorcontrib><creatorcontrib>Chung, Wonmo</creatorcontrib><creatorcontrib>Son, Hungsun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Kewei</au><au>Chung, Wonmo</au><au>Son, Hungsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics estimator based robust fault-tolerant control for VTOL UAVs trajectory tracking</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>162</volume><spage>108062</spage><pages>108062-</pages><artnum>108062</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•A robust passive fault-tolerant control strategy is proposed for the VTOL UAV trajectory tracking.•A first-order filter based dynamics estimator is developed to compensate for the external disturbances and fault signals.•A bounded command force is designed in the position control loop such that the non-singularity extraction of the command attitude is guaranteed.•The stability of the overall closed-loop system is analyzed by using hierarchical system stability theory.•Flight experiments on a quadrotor platform with comparisons are performed to validate the proposed control strategy.
This paper investigates the control issue of the trajectory tracking of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs) in the presence of partial propeller fault and external disturbance. In particular, a robust passive fault-tolerant control strategy is proposed by introducing a first-order filter based dynamics estimator. First, a bounded force command is exploited by employing a new smooth saturation function in the output of the estimator. A sufficient condition in terms of a specified parameter selection criteria is provided to ensure the non-singularity extraction of the command attitude. Then, a torque command is applied to the attitude loop tracking. Since there is merely one filter parameter involved in the dynamics estimator, the practical implementation and parameter tuning can be significantly simplified. Stability analysis indicates that the proposed control strategy guarantees the semi-globally ultimately bounded tracking of VTOL UAVs subject to partial propeller fault and external disturbance. Simulation and experiment results with comparison examples are performed to validate the effectiveness of the proposed strategy. Experimental results show that the proposed strategy achieves the trajectory tracking with a good performance (mean deviation 0.0074 m and standard deviation 0.1202 m) in the presence of 35% propeller fault and 4 m/s persistent wind disturbance.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2021.108062</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2022-01, Vol.162, p.108062, Article 108062 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_2584560889 |
source | Elsevier ScienceDirect Journals Collection |
subjects | Attitudes Control stability Fault tolerance Fault-tolerant Non-singularity Parameters Robust control Stability analysis Tracking Trajectory control Trajectory tracking Unmanned aerial vehicles VTOL Unmanned aerial vehicles |
title | Dynamics estimator based robust fault-tolerant control for VTOL UAVs trajectory tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20estimator%20based%20robust%20fault-tolerant%20control%20for%20VTOL%20UAVs%20trajectory%20tracking&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Xia,%20Kewei&rft.date=2022-01-01&rft.volume=162&rft.spage=108062&rft.pages=108062-&rft.artnum=108062&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2021.108062&rft_dat=%3Cproquest_cross%3E2584560889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584560889&rft_id=info:pmid/&rft_els_id=S0888327021004519&rfr_iscdi=true |