An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants

This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-12, Vol.185, p.115638, Article 115638
Hauptverfasser: Marcelino, C.G., Leite, G.M.C., Delgado, C.A.D.M., de Oliveira, L.B., Wanner, E.F., Jiménez-Fernández, S., Salcedo-Sanz, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115638
container_title Expert systems with applications
container_volume 185
creator Marcelino, C.G.
Leite, G.M.C.
Delgado, C.A.D.M.
de Oliveira, L.B.
Wanner, E.F.
Jiménez-Fernández, S.
Salcedo-Sanz, S.
description This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out. •An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production.
doi_str_mv 10.1016/j.eswa.2021.115638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584544159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421010320</els_id><sourcerecordid>2584544159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdcegU3w-ANBDe6Dkl64qR0mpqklXkCX9uUce3qbL7_P-d8CN1QsqaElnfdGsK3XDPC6JrSouT1CVrRuuJZWTX8FK1IU1RZTqv8HF2E0BFCK0KqFfrZDBiMsdrCEPF-6qPNnOpARzsDhtn1U7RukP6A5Th6J_UOG-dxcP1sh08cd4DdCF4uFHbmr8JDAD87m8BDiLDHQe-gnfolYge8O7TeZaP7Bo_HXg4xXKEzI_sA13_zEn08Prxvn7PXt6eX7eY107xiMWsYKKmgqHNVctC1lkzpUjFVMsWLogLTqhIaLvnyoamlUibBTdMmONeSX6LbY2_65WuCEEXnJj-klYIlsMhzWjSJYkdKexeCByNGb_dJgqBELMJFJxbhYhEujsJT6P4YgnT_bMGLsFjV0FqffIrW2f_ivy_1jn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584544159</pqid></control><display><type>article</type><title>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</title><source>Elsevier ScienceDirect Journals</source><creator>Marcelino, C.G. ; Leite, G.M.C. ; Delgado, C.A.D.M. ; de Oliveira, L.B. ; Wanner, E.F. ; Jiménez-Fernández, S. ; Salcedo-Sanz, S.</creator><creatorcontrib>Marcelino, C.G. ; Leite, G.M.C. ; Delgado, C.A.D.M. ; de Oliveira, L.B. ; Wanner, E.F. ; Jiménez-Fernández, S. ; Salcedo-Sanz, S.</creatorcontrib><description>This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out. •An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.115638</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Cascading hydro-power plant modeling ; Energy production ; Evolutionary algorithms ; Finite element method ; Forecasting ; Hydroelectric plants ; MESH ; Moisture content ; Multi-objective optimization ; Multiple objective analysis ; Optimization ; Power plants ; Reservoirs ; Swarm intelligence ; Turbines ; Unit commitment ; Water discharge</subject><ispartof>Expert systems with applications, 2021-12, Vol.185, p.115638, Article 115638</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Dec 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</citedby><cites>FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</cites><orcidid>0000-0001-6450-3043 ; 0000-0002-2065-1754 ; 0000-0002-7595-8227 ; 0000-0003-3570-4465 ; 0000-0002-4048-1676 ; 0000-0001-6358-243X ; 0000-0002-1486-346X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417421010320$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Marcelino, C.G.</creatorcontrib><creatorcontrib>Leite, G.M.C.</creatorcontrib><creatorcontrib>Delgado, C.A.D.M.</creatorcontrib><creatorcontrib>de Oliveira, L.B.</creatorcontrib><creatorcontrib>Wanner, E.F.</creatorcontrib><creatorcontrib>Jiménez-Fernández, S.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><title>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</title><title>Expert systems with applications</title><description>This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out. •An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production.</description><subject>Cascading hydro-power plant modeling</subject><subject>Energy production</subject><subject>Evolutionary algorithms</subject><subject>Finite element method</subject><subject>Forecasting</subject><subject>Hydroelectric plants</subject><subject>MESH</subject><subject>Moisture content</subject><subject>Multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Power plants</subject><subject>Reservoirs</subject><subject>Swarm intelligence</subject><subject>Turbines</subject><subject>Unit commitment</subject><subject>Water discharge</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdcegU3w-ANBDe6Dkl64qR0mpqklXkCX9uUce3qbL7_P-d8CN1QsqaElnfdGsK3XDPC6JrSouT1CVrRuuJZWTX8FK1IU1RZTqv8HF2E0BFCK0KqFfrZDBiMsdrCEPF-6qPNnOpARzsDhtn1U7RukP6A5Th6J_UOG-dxcP1sh08cd4DdCF4uFHbmr8JDAD87m8BDiLDHQe-gnfolYge8O7TeZaP7Bo_HXg4xXKEzI_sA13_zEn08Prxvn7PXt6eX7eY107xiMWsYKKmgqHNVctC1lkzpUjFVMsWLogLTqhIaLvnyoamlUibBTdMmONeSX6LbY2_65WuCEEXnJj-klYIlsMhzWjSJYkdKexeCByNGb_dJgqBELMJFJxbhYhEujsJT6P4YgnT_bMGLsFjV0FqffIrW2f_ivy_1jn0</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Marcelino, C.G.</creator><creator>Leite, G.M.C.</creator><creator>Delgado, C.A.D.M.</creator><creator>de Oliveira, L.B.</creator><creator>Wanner, E.F.</creator><creator>Jiménez-Fernández, S.</creator><creator>Salcedo-Sanz, S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6450-3043</orcidid><orcidid>https://orcid.org/0000-0002-2065-1754</orcidid><orcidid>https://orcid.org/0000-0002-7595-8227</orcidid><orcidid>https://orcid.org/0000-0003-3570-4465</orcidid><orcidid>https://orcid.org/0000-0002-4048-1676</orcidid><orcidid>https://orcid.org/0000-0001-6358-243X</orcidid><orcidid>https://orcid.org/0000-0002-1486-346X</orcidid></search><sort><creationdate>20211215</creationdate><title>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</title><author>Marcelino, C.G. ; Leite, G.M.C. ; Delgado, C.A.D.M. ; de Oliveira, L.B. ; Wanner, E.F. ; Jiménez-Fernández, S. ; Salcedo-Sanz, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cascading hydro-power plant modeling</topic><topic>Energy production</topic><topic>Evolutionary algorithms</topic><topic>Finite element method</topic><topic>Forecasting</topic><topic>Hydroelectric plants</topic><topic>MESH</topic><topic>Moisture content</topic><topic>Multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Power plants</topic><topic>Reservoirs</topic><topic>Swarm intelligence</topic><topic>Turbines</topic><topic>Unit commitment</topic><topic>Water discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcelino, C.G.</creatorcontrib><creatorcontrib>Leite, G.M.C.</creatorcontrib><creatorcontrib>Delgado, C.A.D.M.</creatorcontrib><creatorcontrib>de Oliveira, L.B.</creatorcontrib><creatorcontrib>Wanner, E.F.</creatorcontrib><creatorcontrib>Jiménez-Fernández, S.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcelino, C.G.</au><au>Leite, G.M.C.</au><au>Delgado, C.A.D.M.</au><au>de Oliveira, L.B.</au><au>Wanner, E.F.</au><au>Jiménez-Fernández, S.</au><au>Salcedo-Sanz, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</atitle><jtitle>Expert systems with applications</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>185</volume><spage>115638</spage><pages>115638-</pages><artnum>115638</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out. •An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.115638</doi><orcidid>https://orcid.org/0000-0001-6450-3043</orcidid><orcidid>https://orcid.org/0000-0002-2065-1754</orcidid><orcidid>https://orcid.org/0000-0002-7595-8227</orcidid><orcidid>https://orcid.org/0000-0003-3570-4465</orcidid><orcidid>https://orcid.org/0000-0002-4048-1676</orcidid><orcidid>https://orcid.org/0000-0001-6358-243X</orcidid><orcidid>https://orcid.org/0000-0002-1486-346X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-12, Vol.185, p.115638, Article 115638
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2584544159
source Elsevier ScienceDirect Journals
subjects Cascading hydro-power plant modeling
Energy production
Evolutionary algorithms
Finite element method
Forecasting
Hydroelectric plants
MESH
Moisture content
Multi-objective optimization
Multiple objective analysis
Optimization
Power plants
Reservoirs
Swarm intelligence
Turbines
Unit commitment
Water discharge
title An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20multi-objective%20evolutionary%20approach%20for%20solving%20the%20operation%20of%20multi-reservoir%20system%20scheduling%20in%20hydro-power%20plants&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Marcelino,%20C.G.&rft.date=2021-12-15&rft.volume=185&rft.spage=115638&rft.pages=115638-&rft.artnum=115638&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.115638&rft_dat=%3Cproquest_cross%3E2584544159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584544159&rft_id=info:pmid/&rft_els_id=S0957417421010320&rfr_iscdi=true