An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants
This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2021-12, Vol.185, p.115638, Article 115638 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115638 |
container_title | Expert systems with applications |
container_volume | 185 |
creator | Marcelino, C.G. Leite, G.M.C. Delgado, C.A.D.M. de Oliveira, L.B. Wanner, E.F. Jiménez-Fernández, S. Salcedo-Sanz, S. |
description | This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.
•An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production. |
doi_str_mv | 10.1016/j.eswa.2021.115638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584544159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421010320</els_id><sourcerecordid>2584544159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdcegU3w-ANBDe6Dkl64qR0mpqklXkCX9uUce3qbL7_P-d8CN1QsqaElnfdGsK3XDPC6JrSouT1CVrRuuJZWTX8FK1IU1RZTqv8HF2E0BFCK0KqFfrZDBiMsdrCEPF-6qPNnOpARzsDhtn1U7RukP6A5Th6J_UOG-dxcP1sh08cd4DdCF4uFHbmr8JDAD87m8BDiLDHQe-gnfolYge8O7TeZaP7Bo_HXg4xXKEzI_sA13_zEn08Prxvn7PXt6eX7eY107xiMWsYKKmgqHNVctC1lkzpUjFVMsWLogLTqhIaLvnyoamlUibBTdMmONeSX6LbY2_65WuCEEXnJj-klYIlsMhzWjSJYkdKexeCByNGb_dJgqBELMJFJxbhYhEujsJT6P4YgnT_bMGLsFjV0FqffIrW2f_ivy_1jn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584544159</pqid></control><display><type>article</type><title>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</title><source>Elsevier ScienceDirect Journals</source><creator>Marcelino, C.G. ; Leite, G.M.C. ; Delgado, C.A.D.M. ; de Oliveira, L.B. ; Wanner, E.F. ; Jiménez-Fernández, S. ; Salcedo-Sanz, S.</creator><creatorcontrib>Marcelino, C.G. ; Leite, G.M.C. ; Delgado, C.A.D.M. ; de Oliveira, L.B. ; Wanner, E.F. ; Jiménez-Fernández, S. ; Salcedo-Sanz, S.</creatorcontrib><description>This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.
•An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.115638</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Cascading hydro-power plant modeling ; Energy production ; Evolutionary algorithms ; Finite element method ; Forecasting ; Hydroelectric plants ; MESH ; Moisture content ; Multi-objective optimization ; Multiple objective analysis ; Optimization ; Power plants ; Reservoirs ; Swarm intelligence ; Turbines ; Unit commitment ; Water discharge</subject><ispartof>Expert systems with applications, 2021-12, Vol.185, p.115638, Article 115638</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Dec 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</citedby><cites>FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</cites><orcidid>0000-0001-6450-3043 ; 0000-0002-2065-1754 ; 0000-0002-7595-8227 ; 0000-0003-3570-4465 ; 0000-0002-4048-1676 ; 0000-0001-6358-243X ; 0000-0002-1486-346X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417421010320$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Marcelino, C.G.</creatorcontrib><creatorcontrib>Leite, G.M.C.</creatorcontrib><creatorcontrib>Delgado, C.A.D.M.</creatorcontrib><creatorcontrib>de Oliveira, L.B.</creatorcontrib><creatorcontrib>Wanner, E.F.</creatorcontrib><creatorcontrib>Jiménez-Fernández, S.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><title>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</title><title>Expert systems with applications</title><description>This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.
•An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production.</description><subject>Cascading hydro-power plant modeling</subject><subject>Energy production</subject><subject>Evolutionary algorithms</subject><subject>Finite element method</subject><subject>Forecasting</subject><subject>Hydroelectric plants</subject><subject>MESH</subject><subject>Moisture content</subject><subject>Multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Power plants</subject><subject>Reservoirs</subject><subject>Swarm intelligence</subject><subject>Turbines</subject><subject>Unit commitment</subject><subject>Water discharge</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdcegU3w-ANBDe6Dkl64qR0mpqklXkCX9uUce3qbL7_P-d8CN1QsqaElnfdGsK3XDPC6JrSouT1CVrRuuJZWTX8FK1IU1RZTqv8HF2E0BFCK0KqFfrZDBiMsdrCEPF-6qPNnOpARzsDhtn1U7RukP6A5Th6J_UOG-dxcP1sh08cd4DdCF4uFHbmr8JDAD87m8BDiLDHQe-gnfolYge8O7TeZaP7Bo_HXg4xXKEzI_sA13_zEn08Prxvn7PXt6eX7eY107xiMWsYKKmgqHNVctC1lkzpUjFVMsWLogLTqhIaLvnyoamlUibBTdMmONeSX6LbY2_65WuCEEXnJj-klYIlsMhzWjSJYkdKexeCByNGb_dJgqBELMJFJxbhYhEujsJT6P4YgnT_bMGLsFjV0FqffIrW2f_ivy_1jn0</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Marcelino, C.G.</creator><creator>Leite, G.M.C.</creator><creator>Delgado, C.A.D.M.</creator><creator>de Oliveira, L.B.</creator><creator>Wanner, E.F.</creator><creator>Jiménez-Fernández, S.</creator><creator>Salcedo-Sanz, S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6450-3043</orcidid><orcidid>https://orcid.org/0000-0002-2065-1754</orcidid><orcidid>https://orcid.org/0000-0002-7595-8227</orcidid><orcidid>https://orcid.org/0000-0003-3570-4465</orcidid><orcidid>https://orcid.org/0000-0002-4048-1676</orcidid><orcidid>https://orcid.org/0000-0001-6358-243X</orcidid><orcidid>https://orcid.org/0000-0002-1486-346X</orcidid></search><sort><creationdate>20211215</creationdate><title>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</title><author>Marcelino, C.G. ; Leite, G.M.C. ; Delgado, C.A.D.M. ; de Oliveira, L.B. ; Wanner, E.F. ; Jiménez-Fernández, S. ; Salcedo-Sanz, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-92ebabe584b63ec8ca2bc6b2b62b3557efdb6e93a30017f8abbf58499dec84ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cascading hydro-power plant modeling</topic><topic>Energy production</topic><topic>Evolutionary algorithms</topic><topic>Finite element method</topic><topic>Forecasting</topic><topic>Hydroelectric plants</topic><topic>MESH</topic><topic>Moisture content</topic><topic>Multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Power plants</topic><topic>Reservoirs</topic><topic>Swarm intelligence</topic><topic>Turbines</topic><topic>Unit commitment</topic><topic>Water discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcelino, C.G.</creatorcontrib><creatorcontrib>Leite, G.M.C.</creatorcontrib><creatorcontrib>Delgado, C.A.D.M.</creatorcontrib><creatorcontrib>de Oliveira, L.B.</creatorcontrib><creatorcontrib>Wanner, E.F.</creatorcontrib><creatorcontrib>Jiménez-Fernández, S.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcelino, C.G.</au><au>Leite, G.M.C.</au><au>Delgado, C.A.D.M.</au><au>de Oliveira, L.B.</au><au>Wanner, E.F.</au><au>Jiménez-Fernández, S.</au><au>Salcedo-Sanz, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants</atitle><jtitle>Expert systems with applications</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>185</volume><spage>115638</spage><pages>115638-</pages><artnum>115638</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.
•An efficient Multi-objective Evolutionary Swarm Hybrid algorithm is proposed.•Development of a nonlinear model to operational control of Hydro-power plants.•Hydro-power plant data regression obtains the maximum efficiency of the power units.•Efficiency energy goals achieved an increasing the profit in the energy production.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.115638</doi><orcidid>https://orcid.org/0000-0001-6450-3043</orcidid><orcidid>https://orcid.org/0000-0002-2065-1754</orcidid><orcidid>https://orcid.org/0000-0002-7595-8227</orcidid><orcidid>https://orcid.org/0000-0003-3570-4465</orcidid><orcidid>https://orcid.org/0000-0002-4048-1676</orcidid><orcidid>https://orcid.org/0000-0001-6358-243X</orcidid><orcidid>https://orcid.org/0000-0002-1486-346X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2021-12, Vol.185, p.115638, Article 115638 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2584544159 |
source | Elsevier ScienceDirect Journals |
subjects | Cascading hydro-power plant modeling Energy production Evolutionary algorithms Finite element method Forecasting Hydroelectric plants MESH Moisture content Multi-objective optimization Multiple objective analysis Optimization Power plants Reservoirs Swarm intelligence Turbines Unit commitment Water discharge |
title | An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20multi-objective%20evolutionary%20approach%20for%20solving%20the%20operation%20of%20multi-reservoir%20system%20scheduling%20in%20hydro-power%20plants&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Marcelino,%20C.G.&rft.date=2021-12-15&rft.volume=185&rft.spage=115638&rft.pages=115638-&rft.artnum=115638&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.115638&rft_dat=%3Cproquest_cross%3E2584544159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584544159&rft_id=info:pmid/&rft_els_id=S0957417421010320&rfr_iscdi=true |