A SPH-GFDM Coupled Method for Elasticity Analysis
SPH (smoothed particle hydrodynamics) is one of the oldest meshless methods used to simulate mechanics of continuum media. Despite its great advantage over the traditional grid-based method, implementing boundary conditions in SPH is not easy and the accuracy near the boundary is low. When SPH is ap...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2021-10, Vol.13 (10), p.1774 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1774 |
container_title | Symmetry (Basel) |
container_volume | 13 |
creator | Tong, Zheming Peng, Zezhao Yue, Yuqing Chen, Zhou |
description | SPH (smoothed particle hydrodynamics) is one of the oldest meshless methods used to simulate mechanics of continuum media. Despite its great advantage over the traditional grid-based method, implementing boundary conditions in SPH is not easy and the accuracy near the boundary is low. When SPH is applied to problems for elasticity, the displacement or stress boundary conditions should be suitably handled in order to achieve fast convergence and acceptable numerical accuracy. The GFDM (generalized finite difference method) can derive explicit formulae for required partial derivatives of field variables. Hence, a SPH–GFDM coupled method is developed to overcome the disadvantage in SPH. This coupled method is applied to 2-D elastic analysis in both symmetric and asymmetric computational domains. The accuracy of this method is demonstrated by the excellent agreement with the results obtained from FEM (finite element method) regardless of the symmetry of the computational domain. When the computational domain is multiply connected, this method needs to be further improved. |
doi_str_mv | 10.3390/sym13101774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584535465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584535465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-c0b86ea0e674d0d5f6700b2f7e74d53fe3325c85db1b5fb7d6eb6364badbe53c3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNSu_AMDLiV6J_NKliH2IbQoqOswT0xJnTqTLPLvTamLns09Bz4u9x6E7gk8UVrCcxoPhBIgUrIrNMtB0qwoS3Z94W_RIqU9TOLAmYAZIhX-eN9k69XLDtdhOHbO4p3rv4PFPkS87FTqW9P2I65-VDemNt2hG6-65Bb_c46-VsvPepNt39avdbXNTF4WfWZAF8IpcEIyC5Z7IQF07qWbMqfeUZpzU3CrieZeSyucFlQwrax2nBo6Rw_nvccYfgeX-mYfhjgdkZqcF4zT6QE-UY9nysSQUnS-Ocb2oOLYEGhOtTQXtdA_AGlTUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584535465</pqid></control><display><type>article</type><title>A SPH-GFDM Coupled Method for Elasticity Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tong, Zheming ; Peng, Zezhao ; Yue, Yuqing ; Chen, Zhou</creator><creatorcontrib>Tong, Zheming ; Peng, Zezhao ; Yue, Yuqing ; Chen, Zhou</creatorcontrib><description>SPH (smoothed particle hydrodynamics) is one of the oldest meshless methods used to simulate mechanics of continuum media. Despite its great advantage over the traditional grid-based method, implementing boundary conditions in SPH is not easy and the accuracy near the boundary is low. When SPH is applied to problems for elasticity, the displacement or stress boundary conditions should be suitably handled in order to achieve fast convergence and acceptable numerical accuracy. The GFDM (generalized finite difference method) can derive explicit formulae for required partial derivatives of field variables. Hence, a SPH–GFDM coupled method is developed to overcome the disadvantage in SPH. This coupled method is applied to 2-D elastic analysis in both symmetric and asymmetric computational domains. The accuracy of this method is demonstrated by the excellent agreement with the results obtained from FEM (finite element method) regardless of the symmetry of the computational domain. When the computational domain is multiply connected, this method needs to be further improved.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym13101774</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Approximation ; Boundary conditions ; Domains ; Elastic analysis ; Elasticity ; Finite difference method ; Finite element analysis ; Finite element method ; Heat transfer ; Meshless methods ; Methods ; Radiation ; Shear strain ; Smooth particle hydrodynamics ; Symmetry ; Two dimensional analysis</subject><ispartof>Symmetry (Basel), 2021-10, Vol.13 (10), p.1774</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-c0b86ea0e674d0d5f6700b2f7e74d53fe3325c85db1b5fb7d6eb6364badbe53c3</citedby><cites>FETCH-LOGICAL-c298t-c0b86ea0e674d0d5f6700b2f7e74d53fe3325c85db1b5fb7d6eb6364badbe53c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tong, Zheming</creatorcontrib><creatorcontrib>Peng, Zezhao</creatorcontrib><creatorcontrib>Yue, Yuqing</creatorcontrib><creatorcontrib>Chen, Zhou</creatorcontrib><title>A SPH-GFDM Coupled Method for Elasticity Analysis</title><title>Symmetry (Basel)</title><description>SPH (smoothed particle hydrodynamics) is one of the oldest meshless methods used to simulate mechanics of continuum media. Despite its great advantage over the traditional grid-based method, implementing boundary conditions in SPH is not easy and the accuracy near the boundary is low. When SPH is applied to problems for elasticity, the displacement or stress boundary conditions should be suitably handled in order to achieve fast convergence and acceptable numerical accuracy. The GFDM (generalized finite difference method) can derive explicit formulae for required partial derivatives of field variables. Hence, a SPH–GFDM coupled method is developed to overcome the disadvantage in SPH. This coupled method is applied to 2-D elastic analysis in both symmetric and asymmetric computational domains. The accuracy of this method is demonstrated by the excellent agreement with the results obtained from FEM (finite element method) regardless of the symmetry of the computational domain. When the computational domain is multiply connected, this method needs to be further improved.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Domains</subject><subject>Elastic analysis</subject><subject>Elasticity</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Heat transfer</subject><subject>Meshless methods</subject><subject>Methods</subject><subject>Radiation</subject><subject>Shear strain</subject><subject>Smooth particle hydrodynamics</subject><subject>Symmetry</subject><subject>Two dimensional analysis</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLw0AUhQdRsNSu_AMDLiV6J_NKliH2IbQoqOswT0xJnTqTLPLvTamLns09Bz4u9x6E7gk8UVrCcxoPhBIgUrIrNMtB0qwoS3Z94W_RIqU9TOLAmYAZIhX-eN9k69XLDtdhOHbO4p3rv4PFPkS87FTqW9P2I65-VDemNt2hG6-65Bb_c46-VsvPepNt39avdbXNTF4WfWZAF8IpcEIyC5Z7IQF07qWbMqfeUZpzU3CrieZeSyucFlQwrax2nBo6Rw_nvccYfgeX-mYfhjgdkZqcF4zT6QE-UY9nysSQUnS-Ocb2oOLYEGhOtTQXtdA_AGlTUw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Tong, Zheming</creator><creator>Peng, Zezhao</creator><creator>Yue, Yuqing</creator><creator>Chen, Zhou</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211001</creationdate><title>A SPH-GFDM Coupled Method for Elasticity Analysis</title><author>Tong, Zheming ; Peng, Zezhao ; Yue, Yuqing ; Chen, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-c0b86ea0e674d0d5f6700b2f7e74d53fe3325c85db1b5fb7d6eb6364badbe53c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Domains</topic><topic>Elastic analysis</topic><topic>Elasticity</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Heat transfer</topic><topic>Meshless methods</topic><topic>Methods</topic><topic>Radiation</topic><topic>Shear strain</topic><topic>Smooth particle hydrodynamics</topic><topic>Symmetry</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Zheming</creatorcontrib><creatorcontrib>Peng, Zezhao</creatorcontrib><creatorcontrib>Yue, Yuqing</creatorcontrib><creatorcontrib>Chen, Zhou</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Zheming</au><au>Peng, Zezhao</au><au>Yue, Yuqing</au><au>Chen, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SPH-GFDM Coupled Method for Elasticity Analysis</atitle><jtitle>Symmetry (Basel)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>13</volume><issue>10</issue><spage>1774</spage><pages>1774-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>SPH (smoothed particle hydrodynamics) is one of the oldest meshless methods used to simulate mechanics of continuum media. Despite its great advantage over the traditional grid-based method, implementing boundary conditions in SPH is not easy and the accuracy near the boundary is low. When SPH is applied to problems for elasticity, the displacement or stress boundary conditions should be suitably handled in order to achieve fast convergence and acceptable numerical accuracy. The GFDM (generalized finite difference method) can derive explicit formulae for required partial derivatives of field variables. Hence, a SPH–GFDM coupled method is developed to overcome the disadvantage in SPH. This coupled method is applied to 2-D elastic analysis in both symmetric and asymmetric computational domains. The accuracy of this method is demonstrated by the excellent agreement with the results obtained from FEM (finite element method) regardless of the symmetry of the computational domain. When the computational domain is multiply connected, this method needs to be further improved.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym13101774</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2021-10, Vol.13 (10), p.1774 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_proquest_journals_2584535465 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Approximation Boundary conditions Domains Elastic analysis Elasticity Finite difference method Finite element analysis Finite element method Heat transfer Meshless methods Methods Radiation Shear strain Smooth particle hydrodynamics Symmetry Two dimensional analysis |
title | A SPH-GFDM Coupled Method for Elasticity Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SPH-GFDM%20Coupled%20Method%20for%20Elasticity%20Analysis&rft.jtitle=Symmetry%20(Basel)&rft.au=Tong,%20Zheming&rft.date=2021-10-01&rft.volume=13&rft.issue=10&rft.spage=1774&rft.pages=1774-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym13101774&rft_dat=%3Cproquest_cross%3E2584535465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584535465&rft_id=info:pmid/&rfr_iscdi=true |