An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)
While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Sijia Wen, Andrew Wang, Liwei He, Huan Fu, Sunyang Miller, Robert Williams, Andrew Harris, Daniel Kavuluru, Ramakanth Liu, Mei Abu-el-rub, Noor Schutte, Dalton Zhang, Rui Rouhizadeh, Masoud Osborne, John D He, Yongqun Topaloglu, Umit Hong, Stephanie S Saltz, Joel H Schaffter, Thomas Pfaff, Emily Chute, Christopher G Duong, Tim Haendel, Melissa A Fuentes, Rafael Szolovits, Peter Xu, Hua Liu, Hongfang National COVID Cohort Collaborative Natural Language Processing Subgroup |
description | While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2584485229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584485229</sourcerecordid><originalsourceid>FETCH-proquest_journals_25844852293</originalsourceid><addsrcrecordid>eNqNjd9KwzAUxoMgOHTvcMAbvSjUpNXq3cg2JsgmQ7wdWXfWdqY5NSeZD-SLmokP4NUH35_fdyZGUqm7rCqkvBBj5kOe5_L-QZalGonviYPVgA6WJkRvLLwY10TTILx6qpG5cw1M8YiWhh5dgLk3PX6R_4A9eZgt1tnWMO5A2851dQKskdH4un2CCdQpgh325Dh4EzpyEH-JocXTYzLSQq_en6egqSUfklhrtnRqHxFulkrfXonzvbGM4z-9FNfz2ZteZIOnz4gcNgeKPpF4I8uqKKpSykf1v9YP2XFbrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584485229</pqid></control><display><type>article</type><title>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</title><source>Free E- Journals</source><creator>Liu, Sijia ; Wen, Andrew ; Wang, Liwei ; He, Huan ; Fu, Sunyang ; Miller, Robert ; Williams, Andrew ; Harris, Daniel ; Kavuluru, Ramakanth ; Liu, Mei ; Abu-el-rub, Noor ; Schutte, Dalton ; Zhang, Rui ; Rouhizadeh, Masoud ; Osborne, John D ; He, Yongqun ; Topaloglu, Umit ; Hong, Stephanie S ; Saltz, Joel H ; Schaffter, Thomas ; Pfaff, Emily ; Chute, Christopher G ; Duong, Tim ; Haendel, Melissa A ; Fuentes, Rafael ; Szolovits, Peter ; Xu, Hua ; Liu, Hongfang ; National COVID Cohort Collaborative ; Natural Language Processing ; Subgroup</creator><creatorcontrib>Liu, Sijia ; Wen, Andrew ; Wang, Liwei ; He, Huan ; Fu, Sunyang ; Miller, Robert ; Williams, Andrew ; Harris, Daniel ; Kavuluru, Ramakanth ; Liu, Mei ; Abu-el-rub, Noor ; Schutte, Dalton ; Zhang, Rui ; Rouhizadeh, Masoud ; Osborne, John D ; He, Yongqun ; Topaloglu, Umit ; Hong, Stephanie S ; Saltz, Joel H ; Schaffter, Thomas ; Pfaff, Emily ; Chute, Christopher G ; Duong, Tim ; Haendel, Melissa A ; Fuentes, Rafael ; Szolovits, Peter ; Xu, Hua ; Liu, Hongfang ; National COVID Cohort Collaborative ; Natural Language Processing ; Subgroup</creatorcontrib><description>While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Collaboration ; Coronaviruses ; COVID-19 ; Information retrieval ; Natural language processing ; Open data ; Signs and symptoms ; Subgroups ; Texts ; Workflow</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Sijia</creatorcontrib><creatorcontrib>Wen, Andrew</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Fu, Sunyang</creatorcontrib><creatorcontrib>Miller, Robert</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Harris, Daniel</creatorcontrib><creatorcontrib>Kavuluru, Ramakanth</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Abu-el-rub, Noor</creatorcontrib><creatorcontrib>Schutte, Dalton</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rouhizadeh, Masoud</creatorcontrib><creatorcontrib>Osborne, John D</creatorcontrib><creatorcontrib>He, Yongqun</creatorcontrib><creatorcontrib>Topaloglu, Umit</creatorcontrib><creatorcontrib>Hong, Stephanie S</creatorcontrib><creatorcontrib>Saltz, Joel H</creatorcontrib><creatorcontrib>Schaffter, Thomas</creatorcontrib><creatorcontrib>Pfaff, Emily</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Duong, Tim</creatorcontrib><creatorcontrib>Haendel, Melissa A</creatorcontrib><creatorcontrib>Fuentes, Rafael</creatorcontrib><creatorcontrib>Szolovits, Peter</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Liu, Hongfang</creatorcontrib><creatorcontrib>National COVID Cohort Collaborative</creatorcontrib><creatorcontrib>Natural Language Processing</creatorcontrib><creatorcontrib>Subgroup</creatorcontrib><title>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</title><title>arXiv.org</title><description>While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Collaboration</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Information retrieval</subject><subject>Natural language processing</subject><subject>Open data</subject><subject>Signs and symptoms</subject><subject>Subgroups</subject><subject>Texts</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjd9KwzAUxoMgOHTvcMAbvSjUpNXq3cg2JsgmQ7wdWXfWdqY5NSeZD-SLmokP4NUH35_fdyZGUqm7rCqkvBBj5kOe5_L-QZalGonviYPVgA6WJkRvLLwY10TTILx6qpG5cw1M8YiWhh5dgLk3PX6R_4A9eZgt1tnWMO5A2851dQKskdH4un2CCdQpgh325Dh4EzpyEH-JocXTYzLSQq_en6egqSUfklhrtnRqHxFulkrfXonzvbGM4z-9FNfz2ZteZIOnz4gcNgeKPpF4I8uqKKpSykf1v9YP2XFbrQ</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Liu, Sijia</creator><creator>Wen, Andrew</creator><creator>Wang, Liwei</creator><creator>He, Huan</creator><creator>Fu, Sunyang</creator><creator>Miller, Robert</creator><creator>Williams, Andrew</creator><creator>Harris, Daniel</creator><creator>Kavuluru, Ramakanth</creator><creator>Liu, Mei</creator><creator>Abu-el-rub, Noor</creator><creator>Schutte, Dalton</creator><creator>Zhang, Rui</creator><creator>Rouhizadeh, Masoud</creator><creator>Osborne, John D</creator><creator>He, Yongqun</creator><creator>Topaloglu, Umit</creator><creator>Hong, Stephanie S</creator><creator>Saltz, Joel H</creator><creator>Schaffter, Thomas</creator><creator>Pfaff, Emily</creator><creator>Chute, Christopher G</creator><creator>Duong, Tim</creator><creator>Haendel, Melissa A</creator><creator>Fuentes, Rafael</creator><creator>Szolovits, Peter</creator><creator>Xu, Hua</creator><creator>Liu, Hongfang</creator><creator>National COVID Cohort Collaborative</creator><creator>Natural Language Processing</creator><creator>Subgroup</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220321</creationdate><title>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</title><author>Liu, Sijia ; Wen, Andrew ; Wang, Liwei ; He, Huan ; Fu, Sunyang ; Miller, Robert ; Williams, Andrew ; Harris, Daniel ; Kavuluru, Ramakanth ; Liu, Mei ; Abu-el-rub, Noor ; Schutte, Dalton ; Zhang, Rui ; Rouhizadeh, Masoud ; Osborne, John D ; He, Yongqun ; Topaloglu, Umit ; Hong, Stephanie S ; Saltz, Joel H ; Schaffter, Thomas ; Pfaff, Emily ; Chute, Christopher G ; Duong, Tim ; Haendel, Melissa A ; Fuentes, Rafael ; Szolovits, Peter ; Xu, Hua ; Liu, Hongfang ; National COVID Cohort Collaborative ; Natural Language Processing ; Subgroup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25844852293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Collaboration</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Information retrieval</topic><topic>Natural language processing</topic><topic>Open data</topic><topic>Signs and symptoms</topic><topic>Subgroups</topic><topic>Texts</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sijia</creatorcontrib><creatorcontrib>Wen, Andrew</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Fu, Sunyang</creatorcontrib><creatorcontrib>Miller, Robert</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Harris, Daniel</creatorcontrib><creatorcontrib>Kavuluru, Ramakanth</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Abu-el-rub, Noor</creatorcontrib><creatorcontrib>Schutte, Dalton</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rouhizadeh, Masoud</creatorcontrib><creatorcontrib>Osborne, John D</creatorcontrib><creatorcontrib>He, Yongqun</creatorcontrib><creatorcontrib>Topaloglu, Umit</creatorcontrib><creatorcontrib>Hong, Stephanie S</creatorcontrib><creatorcontrib>Saltz, Joel H</creatorcontrib><creatorcontrib>Schaffter, Thomas</creatorcontrib><creatorcontrib>Pfaff, Emily</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Duong, Tim</creatorcontrib><creatorcontrib>Haendel, Melissa A</creatorcontrib><creatorcontrib>Fuentes, Rafael</creatorcontrib><creatorcontrib>Szolovits, Peter</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Liu, Hongfang</creatorcontrib><creatorcontrib>National COVID Cohort Collaborative</creatorcontrib><creatorcontrib>Natural Language Processing</creatorcontrib><creatorcontrib>Subgroup</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sijia</au><au>Wen, Andrew</au><au>Wang, Liwei</au><au>He, Huan</au><au>Fu, Sunyang</au><au>Miller, Robert</au><au>Williams, Andrew</au><au>Harris, Daniel</au><au>Kavuluru, Ramakanth</au><au>Liu, Mei</au><au>Abu-el-rub, Noor</au><au>Schutte, Dalton</au><au>Zhang, Rui</au><au>Rouhizadeh, Masoud</au><au>Osborne, John D</au><au>He, Yongqun</au><au>Topaloglu, Umit</au><au>Hong, Stephanie S</au><au>Saltz, Joel H</au><au>Schaffter, Thomas</au><au>Pfaff, Emily</au><au>Chute, Christopher G</au><au>Duong, Tim</au><au>Haendel, Melissa A</au><au>Fuentes, Rafael</au><au>Szolovits, Peter</au><au>Xu, Hua</au><au>Liu, Hongfang</au><au>National COVID Cohort Collaborative</au><au>Natural Language Processing</au><au>Subgroup</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</atitle><jtitle>arXiv.org</jtitle><date>2022-03-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2584485229 |
source | Free E- Journals |
subjects | Algorithms Annotations Collaboration Coronaviruses COVID-19 Information retrieval Natural language processing Open data Signs and symptoms Subgroups Texts Workflow |
title | An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Open%20Natural%20Language%20Processing%20Development%20Framework%20for%20EHR-based%20Clinical%20Research:%20A%20case%20demonstration%20using%20the%20National%20COVID%20Cohort%20Collaborative%20(N3C)&rft.jtitle=arXiv.org&rft.au=Liu,%20Sijia&rft.date=2022-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2584485229%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584485229&rft_id=info:pmid/&rfr_iscdi=true |