An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)

While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Liu, Sijia, Wen, Andrew, Wang, Liwei, He, Huan, Fu, Sunyang, Miller, Robert, Williams, Andrew, Harris, Daniel, Kavuluru, Ramakanth, Liu, Mei, Abu-el-rub, Noor, Schutte, Dalton, Zhang, Rui, Rouhizadeh, Masoud, Osborne, John D, He, Yongqun, Topaloglu, Umit, Hong, Stephanie S, Saltz, Joel H, Schaffter, Thomas, Pfaff, Emily, Chute, Christopher G, Duong, Tim, Haendel, Melissa A, Fuentes, Rafael, Szolovits, Peter, Xu, Hua, Liu, Hongfang, National COVID Cohort Collaborative, Natural Language Processing, Subgroup
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Sijia
Wen, Andrew
Wang, Liwei
He, Huan
Fu, Sunyang
Miller, Robert
Williams, Andrew
Harris, Daniel
Kavuluru, Ramakanth
Liu, Mei
Abu-el-rub, Noor
Schutte, Dalton
Zhang, Rui
Rouhizadeh, Masoud
Osborne, John D
He, Yongqun
Topaloglu, Umit
Hong, Stephanie S
Saltz, Joel H
Schaffter, Thomas
Pfaff, Emily
Chute, Christopher G
Duong, Tim
Haendel, Melissa A
Fuentes, Rafael
Szolovits, Peter
Xu, Hua
Liu, Hongfang
National COVID Cohort Collaborative
Natural Language Processing
Subgroup
description While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2584485229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584485229</sourcerecordid><originalsourceid>FETCH-proquest_journals_25844852293</originalsourceid><addsrcrecordid>eNqNjd9KwzAUxoMgOHTvcMAbvSjUpNXq3cg2JsgmQ7wdWXfWdqY5NSeZD-SLmokP4NUH35_fdyZGUqm7rCqkvBBj5kOe5_L-QZalGonviYPVgA6WJkRvLLwY10TTILx6qpG5cw1M8YiWhh5dgLk3PX6R_4A9eZgt1tnWMO5A2851dQKskdH4un2CCdQpgh325Dh4EzpyEH-JocXTYzLSQq_en6egqSUfklhrtnRqHxFulkrfXonzvbGM4z-9FNfz2ZteZIOnz4gcNgeKPpF4I8uqKKpSykf1v9YP2XFbrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584485229</pqid></control><display><type>article</type><title>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</title><source>Free E- Journals</source><creator>Liu, Sijia ; Wen, Andrew ; Wang, Liwei ; He, Huan ; Fu, Sunyang ; Miller, Robert ; Williams, Andrew ; Harris, Daniel ; Kavuluru, Ramakanth ; Liu, Mei ; Abu-el-rub, Noor ; Schutte, Dalton ; Zhang, Rui ; Rouhizadeh, Masoud ; Osborne, John D ; He, Yongqun ; Topaloglu, Umit ; Hong, Stephanie S ; Saltz, Joel H ; Schaffter, Thomas ; Pfaff, Emily ; Chute, Christopher G ; Duong, Tim ; Haendel, Melissa A ; Fuentes, Rafael ; Szolovits, Peter ; Xu, Hua ; Liu, Hongfang ; National COVID Cohort Collaborative ; Natural Language Processing ; Subgroup</creator><creatorcontrib>Liu, Sijia ; Wen, Andrew ; Wang, Liwei ; He, Huan ; Fu, Sunyang ; Miller, Robert ; Williams, Andrew ; Harris, Daniel ; Kavuluru, Ramakanth ; Liu, Mei ; Abu-el-rub, Noor ; Schutte, Dalton ; Zhang, Rui ; Rouhizadeh, Masoud ; Osborne, John D ; He, Yongqun ; Topaloglu, Umit ; Hong, Stephanie S ; Saltz, Joel H ; Schaffter, Thomas ; Pfaff, Emily ; Chute, Christopher G ; Duong, Tim ; Haendel, Melissa A ; Fuentes, Rafael ; Szolovits, Peter ; Xu, Hua ; Liu, Hongfang ; National COVID Cohort Collaborative ; Natural Language Processing ; Subgroup</creatorcontrib><description>While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Collaboration ; Coronaviruses ; COVID-19 ; Information retrieval ; Natural language processing ; Open data ; Signs and symptoms ; Subgroups ; Texts ; Workflow</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Sijia</creatorcontrib><creatorcontrib>Wen, Andrew</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Fu, Sunyang</creatorcontrib><creatorcontrib>Miller, Robert</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Harris, Daniel</creatorcontrib><creatorcontrib>Kavuluru, Ramakanth</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Abu-el-rub, Noor</creatorcontrib><creatorcontrib>Schutte, Dalton</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rouhizadeh, Masoud</creatorcontrib><creatorcontrib>Osborne, John D</creatorcontrib><creatorcontrib>He, Yongqun</creatorcontrib><creatorcontrib>Topaloglu, Umit</creatorcontrib><creatorcontrib>Hong, Stephanie S</creatorcontrib><creatorcontrib>Saltz, Joel H</creatorcontrib><creatorcontrib>Schaffter, Thomas</creatorcontrib><creatorcontrib>Pfaff, Emily</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Duong, Tim</creatorcontrib><creatorcontrib>Haendel, Melissa A</creatorcontrib><creatorcontrib>Fuentes, Rafael</creatorcontrib><creatorcontrib>Szolovits, Peter</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Liu, Hongfang</creatorcontrib><creatorcontrib>National COVID Cohort Collaborative</creatorcontrib><creatorcontrib>Natural Language Processing</creatorcontrib><creatorcontrib>Subgroup</creatorcontrib><title>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</title><title>arXiv.org</title><description>While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Collaboration</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Information retrieval</subject><subject>Natural language processing</subject><subject>Open data</subject><subject>Signs and symptoms</subject><subject>Subgroups</subject><subject>Texts</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjd9KwzAUxoMgOHTvcMAbvSjUpNXq3cg2JsgmQ7wdWXfWdqY5NSeZD-SLmokP4NUH35_fdyZGUqm7rCqkvBBj5kOe5_L-QZalGonviYPVgA6WJkRvLLwY10TTILx6qpG5cw1M8YiWhh5dgLk3PX6R_4A9eZgt1tnWMO5A2851dQKskdH4un2CCdQpgh325Dh4EzpyEH-JocXTYzLSQq_en6egqSUfklhrtnRqHxFulkrfXonzvbGM4z-9FNfz2ZteZIOnz4gcNgeKPpF4I8uqKKpSykf1v9YP2XFbrQ</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Liu, Sijia</creator><creator>Wen, Andrew</creator><creator>Wang, Liwei</creator><creator>He, Huan</creator><creator>Fu, Sunyang</creator><creator>Miller, Robert</creator><creator>Williams, Andrew</creator><creator>Harris, Daniel</creator><creator>Kavuluru, Ramakanth</creator><creator>Liu, Mei</creator><creator>Abu-el-rub, Noor</creator><creator>Schutte, Dalton</creator><creator>Zhang, Rui</creator><creator>Rouhizadeh, Masoud</creator><creator>Osborne, John D</creator><creator>He, Yongqun</creator><creator>Topaloglu, Umit</creator><creator>Hong, Stephanie S</creator><creator>Saltz, Joel H</creator><creator>Schaffter, Thomas</creator><creator>Pfaff, Emily</creator><creator>Chute, Christopher G</creator><creator>Duong, Tim</creator><creator>Haendel, Melissa A</creator><creator>Fuentes, Rafael</creator><creator>Szolovits, Peter</creator><creator>Xu, Hua</creator><creator>Liu, Hongfang</creator><creator>National COVID Cohort Collaborative</creator><creator>Natural Language Processing</creator><creator>Subgroup</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220321</creationdate><title>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</title><author>Liu, Sijia ; Wen, Andrew ; Wang, Liwei ; He, Huan ; Fu, Sunyang ; Miller, Robert ; Williams, Andrew ; Harris, Daniel ; Kavuluru, Ramakanth ; Liu, Mei ; Abu-el-rub, Noor ; Schutte, Dalton ; Zhang, Rui ; Rouhizadeh, Masoud ; Osborne, John D ; He, Yongqun ; Topaloglu, Umit ; Hong, Stephanie S ; Saltz, Joel H ; Schaffter, Thomas ; Pfaff, Emily ; Chute, Christopher G ; Duong, Tim ; Haendel, Melissa A ; Fuentes, Rafael ; Szolovits, Peter ; Xu, Hua ; Liu, Hongfang ; National COVID Cohort Collaborative ; Natural Language Processing ; Subgroup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25844852293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Collaboration</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Information retrieval</topic><topic>Natural language processing</topic><topic>Open data</topic><topic>Signs and symptoms</topic><topic>Subgroups</topic><topic>Texts</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sijia</creatorcontrib><creatorcontrib>Wen, Andrew</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Fu, Sunyang</creatorcontrib><creatorcontrib>Miller, Robert</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Harris, Daniel</creatorcontrib><creatorcontrib>Kavuluru, Ramakanth</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Abu-el-rub, Noor</creatorcontrib><creatorcontrib>Schutte, Dalton</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rouhizadeh, Masoud</creatorcontrib><creatorcontrib>Osborne, John D</creatorcontrib><creatorcontrib>He, Yongqun</creatorcontrib><creatorcontrib>Topaloglu, Umit</creatorcontrib><creatorcontrib>Hong, Stephanie S</creatorcontrib><creatorcontrib>Saltz, Joel H</creatorcontrib><creatorcontrib>Schaffter, Thomas</creatorcontrib><creatorcontrib>Pfaff, Emily</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Duong, Tim</creatorcontrib><creatorcontrib>Haendel, Melissa A</creatorcontrib><creatorcontrib>Fuentes, Rafael</creatorcontrib><creatorcontrib>Szolovits, Peter</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Liu, Hongfang</creatorcontrib><creatorcontrib>National COVID Cohort Collaborative</creatorcontrib><creatorcontrib>Natural Language Processing</creatorcontrib><creatorcontrib>Subgroup</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sijia</au><au>Wen, Andrew</au><au>Wang, Liwei</au><au>He, Huan</au><au>Fu, Sunyang</au><au>Miller, Robert</au><au>Williams, Andrew</au><au>Harris, Daniel</au><au>Kavuluru, Ramakanth</au><au>Liu, Mei</au><au>Abu-el-rub, Noor</au><au>Schutte, Dalton</au><au>Zhang, Rui</au><au>Rouhizadeh, Masoud</au><au>Osborne, John D</au><au>He, Yongqun</au><au>Topaloglu, Umit</au><au>Hong, Stephanie S</au><au>Saltz, Joel H</au><au>Schaffter, Thomas</au><au>Pfaff, Emily</au><au>Chute, Christopher G</au><au>Duong, Tim</au><au>Haendel, Melissa A</au><au>Fuentes, Rafael</au><au>Szolovits, Peter</au><au>Xu, Hua</au><au>Liu, Hongfang</au><au>National COVID Cohort Collaborative</au><au>Natural Language Processing</au><au>Subgroup</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)</atitle><jtitle>arXiv.org</jtitle><date>2022-03-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>While we pay attention to the latest advances in clinical natural language processing (NLP), we can notice some resistance in the clinical and translational research community to adopt NLP models due to limited transparency, interpretability, and usability. In this study, we proposed an open natural language processing development framework. We evaluated it through the implementation of NLP algorithms for the National COVID Cohort Collaborative (N3C). Based on the interests in information extraction from COVID-19 related clinical notes, our work includes 1) an open data annotation process using COVID-19 signs and symptoms as the use case, 2) a community-driven ruleset composing platform, and 3) a synthetic text data generation workflow to generate texts for information extraction tasks without involving human subjects. The corpora were derived from texts from three different institutions (Mayo Clinic, University of Kentucky, University of Minnesota). The gold standard annotations were tested with a single institution's (Mayo) ruleset. This resulted in performances of 0.876, 0.706, and 0.694 in F-scores for Mayo, Minnesota, and Kentucky test datasets, respectively. The study as a consortium effort of the N3C NLP subgroup demonstrates the feasibility of creating a federated NLP algorithm development and benchmarking platform to enhance multi-institution clinical NLP study and adoption. Although we use COVID-19 as a use case in this effort, our framework is general enough to be applied to other domains of interest in clinical NLP.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2584485229
source Free E- Journals
subjects Algorithms
Annotations
Collaboration
Coronaviruses
COVID-19
Information retrieval
Natural language processing
Open data
Signs and symptoms
Subgroups
Texts
Workflow
title An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Open%20Natural%20Language%20Processing%20Development%20Framework%20for%20EHR-based%20Clinical%20Research:%20A%20case%20demonstration%20using%20the%20National%20COVID%20Cohort%20Collaborative%20(N3C)&rft.jtitle=arXiv.org&rft.au=Liu,%20Sijia&rft.date=2022-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2584485229%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584485229&rft_id=info:pmid/&rfr_iscdi=true