Sintering Modeling of Thermal Barrier Coatings at Elevated Temperatures: A Review of Recent Advances

To achieve a higher efficiency in gas turbine engine by increasing the inlet-temperature of burning gas is one of the primary goals in aviation industry. The development of thermal barrier coating system (TBCs) continuously raises the inlet-temperature of gas turbine engine in the past decades. Due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2021-10, Vol.11 (10), p.1214
Hauptverfasser: Yan, Jinrong, Wang, Xin, Chen, Kuiying, Lee, Kang N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1214
container_title Coatings (Basel)
container_volume 11
creator Yan, Jinrong
Wang, Xin
Chen, Kuiying
Lee, Kang N.
description To achieve a higher efficiency in gas turbine engine by increasing the inlet-temperature of burning gas is one of the primary goals in aviation industry. The development of thermal barrier coating system (TBCs) continuously raises the inlet-temperature of gas turbine engine in the past decades. Due to the complexity of TBCs and harsh operation environments, the degradation and failure mechanisms of hot section components have not been fully understood, and consequently limits the application of TBCs. It was identified that high-temperature sintering of the topcoat in a typical TBC could be one of the major sources of its failure since the microstructures of the constituent coating layers evolve dynamically during the service period, resulting in significant changes of mechanical and thermal physical properties of the coating system. This paper intends to review recent advances of analytical and numerical modeling of sintering of topcoat in TBCs including the modeling methodology and applications of the models, particularly the implementation of finite element combined with specific materials constitutive functions. Critical remarks on the future development and applications of these models are also discussed in the end.
doi_str_mv 10.3390/coatings11101214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584359298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584359298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-a667b4a6d9ad6b814b1905d5b87486bb1f8e90b97ef80368737b63c6e46692ff3</originalsourceid><addsrcrecordid>eNpdUM1LwzAcDaLgmLt7DHiu5tekaeJtjvkBE2HOc0maX7Sja2eSTfzv7ZgH8V3eO7wPeIRcArvmXLObujep6d4jADDIQZyQUc5KnUkB-ekffU4mMa7ZAA1cgR4R99p0CcMQps-9w_Ygek9XHxg2pqV3JoQGA539DlCT6LzFvUno6Ao3Wwwm7QLGWzqlS9w3-HWIL7HGLtGp25uuxnhBzrxpI05-eUze7uer2WO2eHl4mk0XWc2Bp8xIWVphpNPGSatAWNCscIVVpVDSWvAKNbO6RK8Yl6rkpZW8liik1Ln3fEyujr3b0H_uMKZq3e9CN0xWeaEEL3Su1eBiR1cd-hgD-mobmo0J3xWw6nBn9f9O_gPGNmml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584359298</pqid></control><display><type>article</type><title>Sintering Modeling of Thermal Barrier Coatings at Elevated Temperatures: A Review of Recent Advances</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Yan, Jinrong ; Wang, Xin ; Chen, Kuiying ; Lee, Kang N.</creator><creatorcontrib>Yan, Jinrong ; Wang, Xin ; Chen, Kuiying ; Lee, Kang N.</creatorcontrib><description>To achieve a higher efficiency in gas turbine engine by increasing the inlet-temperature of burning gas is one of the primary goals in aviation industry. The development of thermal barrier coating system (TBCs) continuously raises the inlet-temperature of gas turbine engine in the past decades. Due to the complexity of TBCs and harsh operation environments, the degradation and failure mechanisms of hot section components have not been fully understood, and consequently limits the application of TBCs. It was identified that high-temperature sintering of the topcoat in a typical TBC could be one of the major sources of its failure since the microstructures of the constituent coating layers evolve dynamically during the service period, resulting in significant changes of mechanical and thermal physical properties of the coating system. This paper intends to review recent advances of analytical and numerical modeling of sintering of topcoat in TBCs including the modeling methodology and applications of the models, particularly the implementation of finite element combined with specific materials constitutive functions. Critical remarks on the future development and applications of these models are also discussed in the end.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings11101214</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Continuous coating ; Cooling ; Crystal structure ; Deformation ; Design ; Failure ; Failure mechanisms ; Gas turbine engines ; Heat conductivity ; High temperature ; Industrial development ; Insulation ; Mathematical analysis ; Mechanical properties ; Phase transitions ; Physical properties ; Principles ; Protective coatings ; Residual stress ; Sintering ; Temperature ; Thermal barrier coatings</subject><ispartof>Coatings (Basel), 2021-10, Vol.11 (10), p.1214</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-a667b4a6d9ad6b814b1905d5b87486bb1f8e90b97ef80368737b63c6e46692ff3</citedby><cites>FETCH-LOGICAL-c313t-a667b4a6d9ad6b814b1905d5b87486bb1f8e90b97ef80368737b63c6e46692ff3</cites><orcidid>0000-0002-2689-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Jinrong</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Chen, Kuiying</creatorcontrib><creatorcontrib>Lee, Kang N.</creatorcontrib><title>Sintering Modeling of Thermal Barrier Coatings at Elevated Temperatures: A Review of Recent Advances</title><title>Coatings (Basel)</title><description>To achieve a higher efficiency in gas turbine engine by increasing the inlet-temperature of burning gas is one of the primary goals in aviation industry. The development of thermal barrier coating system (TBCs) continuously raises the inlet-temperature of gas turbine engine in the past decades. Due to the complexity of TBCs and harsh operation environments, the degradation and failure mechanisms of hot section components have not been fully understood, and consequently limits the application of TBCs. It was identified that high-temperature sintering of the topcoat in a typical TBC could be one of the major sources of its failure since the microstructures of the constituent coating layers evolve dynamically during the service period, resulting in significant changes of mechanical and thermal physical properties of the coating system. This paper intends to review recent advances of analytical and numerical modeling of sintering of topcoat in TBCs including the modeling methodology and applications of the models, particularly the implementation of finite element combined with specific materials constitutive functions. Critical remarks on the future development and applications of these models are also discussed in the end.</description><subject>Continuous coating</subject><subject>Cooling</subject><subject>Crystal structure</subject><subject>Deformation</subject><subject>Design</subject><subject>Failure</subject><subject>Failure mechanisms</subject><subject>Gas turbine engines</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Industrial development</subject><subject>Insulation</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Phase transitions</subject><subject>Physical properties</subject><subject>Principles</subject><subject>Protective coatings</subject><subject>Residual stress</subject><subject>Sintering</subject><subject>Temperature</subject><subject>Thermal barrier coatings</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUM1LwzAcDaLgmLt7DHiu5tekaeJtjvkBE2HOc0maX7Sja2eSTfzv7ZgH8V3eO7wPeIRcArvmXLObujep6d4jADDIQZyQUc5KnUkB-ekffU4mMa7ZAA1cgR4R99p0CcMQps-9w_Ygek9XHxg2pqV3JoQGA539DlCT6LzFvUno6Ao3Wwwm7QLGWzqlS9w3-HWIL7HGLtGp25uuxnhBzrxpI05-eUze7uer2WO2eHl4mk0XWc2Bp8xIWVphpNPGSatAWNCscIVVpVDSWvAKNbO6RK8Yl6rkpZW8liik1Ln3fEyujr3b0H_uMKZq3e9CN0xWeaEEL3Su1eBiR1cd-hgD-mobmo0J3xWw6nBn9f9O_gPGNmml</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Yan, Jinrong</creator><creator>Wang, Xin</creator><creator>Chen, Kuiying</creator><creator>Lee, Kang N.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2689-9689</orcidid></search><sort><creationdate>20211001</creationdate><title>Sintering Modeling of Thermal Barrier Coatings at Elevated Temperatures: A Review of Recent Advances</title><author>Yan, Jinrong ; Wang, Xin ; Chen, Kuiying ; Lee, Kang N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-a667b4a6d9ad6b814b1905d5b87486bb1f8e90b97ef80368737b63c6e46692ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Continuous coating</topic><topic>Cooling</topic><topic>Crystal structure</topic><topic>Deformation</topic><topic>Design</topic><topic>Failure</topic><topic>Failure mechanisms</topic><topic>Gas turbine engines</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Industrial development</topic><topic>Insulation</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Phase transitions</topic><topic>Physical properties</topic><topic>Principles</topic><topic>Protective coatings</topic><topic>Residual stress</topic><topic>Sintering</topic><topic>Temperature</topic><topic>Thermal barrier coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jinrong</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Chen, Kuiying</creatorcontrib><creatorcontrib>Lee, Kang N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jinrong</au><au>Wang, Xin</au><au>Chen, Kuiying</au><au>Lee, Kang N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sintering Modeling of Thermal Barrier Coatings at Elevated Temperatures: A Review of Recent Advances</atitle><jtitle>Coatings (Basel)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>10</issue><spage>1214</spage><pages>1214-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>To achieve a higher efficiency in gas turbine engine by increasing the inlet-temperature of burning gas is one of the primary goals in aviation industry. The development of thermal barrier coating system (TBCs) continuously raises the inlet-temperature of gas turbine engine in the past decades. Due to the complexity of TBCs and harsh operation environments, the degradation and failure mechanisms of hot section components have not been fully understood, and consequently limits the application of TBCs. It was identified that high-temperature sintering of the topcoat in a typical TBC could be one of the major sources of its failure since the microstructures of the constituent coating layers evolve dynamically during the service period, resulting in significant changes of mechanical and thermal physical properties of the coating system. This paper intends to review recent advances of analytical and numerical modeling of sintering of topcoat in TBCs including the modeling methodology and applications of the models, particularly the implementation of finite element combined with specific materials constitutive functions. Critical remarks on the future development and applications of these models are also discussed in the end.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings11101214</doi><orcidid>https://orcid.org/0000-0002-2689-9689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2021-10, Vol.11 (10), p.1214
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2584359298
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Continuous coating
Cooling
Crystal structure
Deformation
Design
Failure
Failure mechanisms
Gas turbine engines
Heat conductivity
High temperature
Industrial development
Insulation
Mathematical analysis
Mechanical properties
Phase transitions
Physical properties
Principles
Protective coatings
Residual stress
Sintering
Temperature
Thermal barrier coatings
title Sintering Modeling of Thermal Barrier Coatings at Elevated Temperatures: A Review of Recent Advances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sintering%20Modeling%20of%20Thermal%20Barrier%20Coatings%20at%20Elevated%20Temperatures:%20A%20Review%20of%20Recent%20Advances&rft.jtitle=Coatings%20(Basel)&rft.au=Yan,%20Jinrong&rft.date=2021-10-01&rft.volume=11&rft.issue=10&rft.spage=1214&rft.pages=1214-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings11101214&rft_dat=%3Cproquest_cross%3E2584359298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584359298&rft_id=info:pmid/&rfr_iscdi=true