Demand Forecasting of Online Car-Hailing with Combining LSTM + Attention Approaches

The accurate prediction of online car-hailing demand plays an increasingly important role in real-time scheduling and dynamic pricing. Most studies have found that the demand of online car-hailing is highly correlated with both temporal and spatial distributions of journeys. However, the importance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-10, Vol.10 (20), p.2480
Hauptverfasser: Ye, Xiaofei, Ye, Qiming, Yan, Xingchen, Wang, Tao, Chen, Jun, Li, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate prediction of online car-hailing demand plays an increasingly important role in real-time scheduling and dynamic pricing. Most studies have found that the demand of online car-hailing is highly correlated with both temporal and spatial distributions of journeys. However, the importance of temporal and spatial sequences is not distinguished in the context of seeking to improve prediction, when in actual fact different time series and space sequences have different impacts on the distribution of demand and supply for online car-hailing. In order to accurately predict the short-term demand of online car-hailing in different regions of a city, a combined attention-based LSTM (LSTM + Attention) model for forecasting was constructed by extracting temporal features, spatial features, and weather features. Significantly, an attention mechanism is used to distinguish the time series and space sequences of order data. The order data in Haikou city was collected as the training and testing datasets. Compared with other forecasting models (GBDT, BPNN, RNN, and single LSTM), the results show that the short-term demand forecasting model LSTM + Attention outperforms other models. The results verify that the proposed model can support advanced scheduling and dynamic pricing for online car-hailing.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10202480