An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems

Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-10, Vol.10 (20), p.2522
Hauptverfasser: Akpudo, Ugochukwu Ejike, Hur, Jang-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 2522
container_title Electronics (Basel)
container_volume 10
creator Akpudo, Ugochukwu Ejike
Hur, Jang-Wook
description Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.
doi_str_mv 10.3390/electronics10202522
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584345329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584345329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS54Cz2yjxsaQtRSpC4iFOKHKcNXJJ7GKngv49QeXAgb3MHGZmR8PYeSouEaW4opZ0H7yzOqYCBGQAR2wEIpeJBAnHf_gpm8S4EcPJFAsUI_Y6c3zxtW2Vdapuic_XybWK1PDSu8b21jt-N0T3Plj3xpdBdfTpwzs3PvAX1VNIFt2ujdbYwTO3FKnl5QN_3MeeunjGToxqI01-ccyel4uncpWs729uy9k60YA5JAURmhqkHsqbWqIiLQtFQtSGpgWBwFyqzMgMkIxO84Fro5osb1ApozWO2cUhdxv8x45iX238LrjhZQVZMcVphiAHFR5UOvgYA5lqG2ynwr5KRfUzZfXPlPgNEpJrQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584345329</pqid></control><display><type>article</type><title>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creator><creatorcontrib>Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creatorcontrib><description>Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10202522</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Automotive engines ; Common rail ; Composition ; Condition monitoring ; Cylinder liners ; Diesel engines ; Diesel fuels ; Efficiency ; Empirical analysis ; Engines ; Neural networks ; Pollution monitoring ; Signal processing ; Spectrum analysis ; Viscosity</subject><ispartof>Electronics (Basel), 2021-10, Vol.10 (20), p.2522</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</citedby><cites>FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</cites><orcidid>0000-0003-4221-5192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><title>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</title><title>Electronics (Basel)</title><description>Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automotive engines</subject><subject>Common rail</subject><subject>Composition</subject><subject>Condition monitoring</subject><subject>Cylinder liners</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Efficiency</subject><subject>Empirical analysis</subject><subject>Engines</subject><subject>Neural networks</subject><subject>Pollution monitoring</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Viscosity</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS54Cz2yjxsaQtRSpC4iFOKHKcNXJJ7GKngv49QeXAgb3MHGZmR8PYeSouEaW4opZ0H7yzOqYCBGQAR2wEIpeJBAnHf_gpm8S4EcPJFAsUI_Y6c3zxtW2Vdapuic_XybWK1PDSu8b21jt-N0T3Plj3xpdBdfTpwzs3PvAX1VNIFt2ujdbYwTO3FKnl5QN_3MeeunjGToxqI01-ccyel4uncpWs729uy9k60YA5JAURmhqkHsqbWqIiLQtFQtSGpgWBwFyqzMgMkIxO84Fro5osb1ApozWO2cUhdxv8x45iX238LrjhZQVZMcVphiAHFR5UOvgYA5lqG2ynwr5KRfUzZfXPlPgNEpJrQQ</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Akpudo, Ugochukwu Ejike</creator><creator>Hur, Jang-Wook</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid></search><sort><creationdate>20211015</creationdate><title>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</title><author>Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automotive engines</topic><topic>Common rail</topic><topic>Composition</topic><topic>Condition monitoring</topic><topic>Cylinder liners</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Efficiency</topic><topic>Empirical analysis</topic><topic>Engines</topic><topic>Neural networks</topic><topic>Pollution monitoring</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akpudo, Ugochukwu Ejike</au><au>Hur, Jang-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>10</volume><issue>20</issue><spage>2522</spage><pages>2522-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10202522</doi><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-10, Vol.10 (20), p.2522
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2584345329
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Artificial neural networks
Automotive engines
Common rail
Composition
Condition monitoring
Cylinder liners
Diesel engines
Diesel fuels
Efficiency
Empirical analysis
Engines
Neural networks
Pollution monitoring
Signal processing
Spectrum analysis
Viscosity
title An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explainable%20DL-Based%20Condition%20Monitoring%20Framework%20for%20Water-Emulsified%20Diesel%20CR%20Systems&rft.jtitle=Electronics%20(Basel)&rft.au=Akpudo,%20Ugochukwu%20Ejike&rft.date=2021-10-15&rft.volume=10&rft.issue=20&rft.spage=2522&rft.pages=2522-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10202522&rft_dat=%3Cproquest_cross%3E2584345329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584345329&rft_id=info:pmid/&rfr_iscdi=true