An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems
Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diese...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-10, Vol.10 (20), p.2522 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 2522 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Akpudo, Ugochukwu Ejike Hur, Jang-Wook |
description | Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%. |
doi_str_mv | 10.3390/electronics10202522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584345329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584345329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS54Cz2yjxsaQtRSpC4iFOKHKcNXJJ7GKngv49QeXAgb3MHGZmR8PYeSouEaW4opZ0H7yzOqYCBGQAR2wEIpeJBAnHf_gpm8S4EcPJFAsUI_Y6c3zxtW2Vdapuic_XybWK1PDSu8b21jt-N0T3Plj3xpdBdfTpwzs3PvAX1VNIFt2ujdbYwTO3FKnl5QN_3MeeunjGToxqI01-ccyel4uncpWs729uy9k60YA5JAURmhqkHsqbWqIiLQtFQtSGpgWBwFyqzMgMkIxO84Fro5osb1ApozWO2cUhdxv8x45iX238LrjhZQVZMcVphiAHFR5UOvgYA5lqG2ynwr5KRfUzZfXPlPgNEpJrQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584345329</pqid></control><display><type>article</type><title>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creator><creatorcontrib>Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creatorcontrib><description>Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10202522</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Automotive engines ; Common rail ; Composition ; Condition monitoring ; Cylinder liners ; Diesel engines ; Diesel fuels ; Efficiency ; Empirical analysis ; Engines ; Neural networks ; Pollution monitoring ; Signal processing ; Spectrum analysis ; Viscosity</subject><ispartof>Electronics (Basel), 2021-10, Vol.10 (20), p.2522</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</citedby><cites>FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</cites><orcidid>0000-0003-4221-5192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><title>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</title><title>Electronics (Basel)</title><description>Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automotive engines</subject><subject>Common rail</subject><subject>Composition</subject><subject>Condition monitoring</subject><subject>Cylinder liners</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Efficiency</subject><subject>Empirical analysis</subject><subject>Engines</subject><subject>Neural networks</subject><subject>Pollution monitoring</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Viscosity</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS54Cz2yjxsaQtRSpC4iFOKHKcNXJJ7GKngv49QeXAgb3MHGZmR8PYeSouEaW4opZ0H7yzOqYCBGQAR2wEIpeJBAnHf_gpm8S4EcPJFAsUI_Y6c3zxtW2Vdapuic_XybWK1PDSu8b21jt-N0T3Plj3xpdBdfTpwzs3PvAX1VNIFt2ujdbYwTO3FKnl5QN_3MeeunjGToxqI01-ccyel4uncpWs729uy9k60YA5JAURmhqkHsqbWqIiLQtFQtSGpgWBwFyqzMgMkIxO84Fro5osb1ApozWO2cUhdxv8x45iX238LrjhZQVZMcVphiAHFR5UOvgYA5lqG2ynwr5KRfUzZfXPlPgNEpJrQQ</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Akpudo, Ugochukwu Ejike</creator><creator>Hur, Jang-Wook</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid></search><sort><creationdate>20211015</creationdate><title>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</title><author>Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2372-8ee3fb29c025fb93aec98ae00bfe48e20379a5f9523efc17a5fcfad57d3aafcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automotive engines</topic><topic>Common rail</topic><topic>Composition</topic><topic>Condition monitoring</topic><topic>Cylinder liners</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Efficiency</topic><topic>Empirical analysis</topic><topic>Engines</topic><topic>Neural networks</topic><topic>Pollution monitoring</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akpudo, Ugochukwu Ejike</au><au>Hur, Jang-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>10</volume><issue>20</issue><spage>2522</spage><pages>2522-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10202522</doi><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-10, Vol.10 (20), p.2522 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2584345329 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Artificial neural networks Automotive engines Common rail Composition Condition monitoring Cylinder liners Diesel engines Diesel fuels Efficiency Empirical analysis Engines Neural networks Pollution monitoring Signal processing Spectrum analysis Viscosity |
title | An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explainable%20DL-Based%20Condition%20Monitoring%20Framework%20for%20Water-Emulsified%20Diesel%20CR%20Systems&rft.jtitle=Electronics%20(Basel)&rft.au=Akpudo,%20Ugochukwu%20Ejike&rft.date=2021-10-15&rft.volume=10&rft.issue=20&rft.spage=2522&rft.pages=2522-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10202522&rft_dat=%3Cproquest_cross%3E2584345329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584345329&rft_id=info:pmid/&rfr_iscdi=true |