Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada

Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2021-10, Vol.11 (10), p.476, Article 476
Hauptverfasser: Kubilay, Aytac, Bourcet, John, Gravel, Jessica, Zhou, Xiaohai, Moore, Travis, Lacasse, Michael A., Carmeliet, Jan, Derome, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 476
container_title Buildings (Basel)
container_volume 11
creator Kubilay, Aytac
Bourcet, John
Gravel, Jessica
Zhou, Xiaohai
Moore, Travis
Lacasse, Michael A.
Carmeliet, Jan
Derome, Dominique
description Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature.
doi_str_mv 10.3390/buildings11100476
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2584336562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8e3bff2200da459f8d7671a1e0eaef7c</doaj_id><sourcerecordid>2584336562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEElXbB-BmiSMs2I7tJNwgLVBpUatCxTGa2OPFS9be2k6rvkqfFm8XKiQuzMUz1v_9M9JfVS8YfVPXHX07zm4yzq8SY4xS0agn1QGnjVzImnZP_-qfV8cprWmpVnIuxUF134fN6DwacpWQBEu-O28WJ9HdoCeX4DxZBjAEvCEXIaPPDiZyegPbECG74EkOu3GaISP5ElzKc0RyAhtYIbl06ec70kNx_ppnc0d2-h9ILiBODjbFjXz4czopq85zhlt4XQgPBo6qZxamhMe_38Pq6uPpt_7zYnn-6ax_v1zouuV5oZXQBqTFTik-ggDaWBi7Bo1qNWUdmk50nGomOFcG0YCyWkjohO6oVE19WJ3tfU2A9bCNbgPxbgjghoePEFcDxOz0hEOL9Wgt55QaELKzrWlUw4AhRUDb6OL1cu-1jeF6xpSHdZijL-cPXLairpVUvKjYXqVjSCmifdzK6LBLdPgn0cK0e-YWx2CTdug1PnIl0YapRrF6Fy7rXX5Ipw-zzwV99f9o_QsTTbgO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584336562</pqid></control><display><type>article</type><title>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kubilay, Aytac ; Bourcet, John ; Gravel, Jessica ; Zhou, Xiaohai ; Moore, Travis ; Lacasse, Michael A. ; Carmeliet, Jan ; Derome, Dominique</creator><creatorcontrib>Kubilay, Aytac ; Bourcet, John ; Gravel, Jessica ; Zhou, Xiaohai ; Moore, Travis ; Lacasse, Michael A. ; Carmeliet, Jan ; Derome, Dominique</creatorcontrib><description>Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature.</description><identifier>ISSN: 2075-5309</identifier><identifier>EISSN: 2075-5309</identifier><identifier>DOI: 10.3390/buildings11100476</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Air temperature ; Building envelopes ; Buildings ; Case studies ; Climate change ; climatic index ; Computational fluid dynamics ; Computer applications ; Construction &amp; Building Technology ; Cultural heritage ; Damage assessment ; degradation ; durability ; Engineering ; Engineering, Civil ; Evaporation ; Evaporation rate ; Fluid dynamics ; Freeze-thawing ; Freezing ; Freezing point ; Hydrodynamics ; Identification methods ; Melting points ; Meteorological data ; Moisture ; Parliaments ; potential evaporation ; Preventive maintenance ; Rain ; Reynolds number ; Risk ; Risk assessment ; Science &amp; Technology ; Simulation ; Technology ; Turbulence models ; Velocity ; Wetting ; Wind ; wind-driven rain</subject><ispartof>Buildings (Basel), 2021-10, Vol.11 (10), p.476, Article 476</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000716761300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</citedby><cites>FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</cites><orcidid>0000-0002-0145-507X ; 0000-0001-7489-2652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Kubilay, Aytac</creatorcontrib><creatorcontrib>Bourcet, John</creatorcontrib><creatorcontrib>Gravel, Jessica</creatorcontrib><creatorcontrib>Zhou, Xiaohai</creatorcontrib><creatorcontrib>Moore, Travis</creatorcontrib><creatorcontrib>Lacasse, Michael A.</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><creatorcontrib>Derome, Dominique</creatorcontrib><title>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</title><title>Buildings (Basel)</title><addtitle>BUILDINGS-BASEL</addtitle><description>Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature.</description><subject>Air temperature</subject><subject>Building envelopes</subject><subject>Buildings</subject><subject>Case studies</subject><subject>Climate change</subject><subject>climatic index</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Construction &amp; Building Technology</subject><subject>Cultural heritage</subject><subject>Damage assessment</subject><subject>degradation</subject><subject>durability</subject><subject>Engineering</subject><subject>Engineering, Civil</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Fluid dynamics</subject><subject>Freeze-thawing</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>Hydrodynamics</subject><subject>Identification methods</subject><subject>Melting points</subject><subject>Meteorological data</subject><subject>Moisture</subject><subject>Parliaments</subject><subject>potential evaporation</subject><subject>Preventive maintenance</subject><subject>Rain</subject><subject>Reynolds number</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Technology</subject><subject>Turbulence models</subject><subject>Velocity</subject><subject>Wetting</subject><subject>Wind</subject><subject>wind-driven rain</subject><issn>2075-5309</issn><issn>2075-5309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFu1DAQhiMEElXbB-BmiSMs2I7tJNwgLVBpUatCxTGa2OPFS9be2k6rvkqfFm8XKiQuzMUz1v_9M9JfVS8YfVPXHX07zm4yzq8SY4xS0agn1QGnjVzImnZP_-qfV8cprWmpVnIuxUF134fN6DwacpWQBEu-O28WJ9HdoCeX4DxZBjAEvCEXIaPPDiZyegPbECG74EkOu3GaISP5ElzKc0RyAhtYIbl06ec70kNx_ppnc0d2-h9ILiBODjbFjXz4czopq85zhlt4XQgPBo6qZxamhMe_38Pq6uPpt_7zYnn-6ax_v1zouuV5oZXQBqTFTik-ggDaWBi7Bo1qNWUdmk50nGomOFcG0YCyWkjohO6oVE19WJ3tfU2A9bCNbgPxbgjghoePEFcDxOz0hEOL9Wgt55QaELKzrWlUw4AhRUDb6OL1cu-1jeF6xpSHdZijL-cPXLairpVUvKjYXqVjSCmifdzK6LBLdPgn0cK0e-YWx2CTdug1PnIl0YapRrF6Fy7rXX5Ipw-zzwV99f9o_QsTTbgO</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kubilay, Aytac</creator><creator>Bourcet, John</creator><creator>Gravel, Jessica</creator><creator>Zhou, Xiaohai</creator><creator>Moore, Travis</creator><creator>Lacasse, Michael A.</creator><creator>Carmeliet, Jan</creator><creator>Derome, Dominique</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0145-507X</orcidid><orcidid>https://orcid.org/0000-0001-7489-2652</orcidid></search><sort><creationdate>20211001</creationdate><title>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</title><author>Kubilay, Aytac ; Bourcet, John ; Gravel, Jessica ; Zhou, Xiaohai ; Moore, Travis ; Lacasse, Michael A. ; Carmeliet, Jan ; Derome, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Building envelopes</topic><topic>Buildings</topic><topic>Case studies</topic><topic>Climate change</topic><topic>climatic index</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Construction &amp; Building Technology</topic><topic>Cultural heritage</topic><topic>Damage assessment</topic><topic>degradation</topic><topic>durability</topic><topic>Engineering</topic><topic>Engineering, Civil</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Fluid dynamics</topic><topic>Freeze-thawing</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>Hydrodynamics</topic><topic>Identification methods</topic><topic>Melting points</topic><topic>Meteorological data</topic><topic>Moisture</topic><topic>Parliaments</topic><topic>potential evaporation</topic><topic>Preventive maintenance</topic><topic>Rain</topic><topic>Reynolds number</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Technology</topic><topic>Turbulence models</topic><topic>Velocity</topic><topic>Wetting</topic><topic>Wind</topic><topic>wind-driven rain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubilay, Aytac</creatorcontrib><creatorcontrib>Bourcet, John</creatorcontrib><creatorcontrib>Gravel, Jessica</creatorcontrib><creatorcontrib>Zhou, Xiaohai</creatorcontrib><creatorcontrib>Moore, Travis</creatorcontrib><creatorcontrib>Lacasse, Michael A.</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><creatorcontrib>Derome, Dominique</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Buildings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubilay, Aytac</au><au>Bourcet, John</au><au>Gravel, Jessica</au><au>Zhou, Xiaohai</au><au>Moore, Travis</au><au>Lacasse, Michael A.</au><au>Carmeliet, Jan</au><au>Derome, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</atitle><jtitle>Buildings (Basel)</jtitle><stitle>BUILDINGS-BASEL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>10</issue><spage>476</spage><pages>476-</pages><artnum>476</artnum><issn>2075-5309</issn><eissn>2075-5309</eissn><abstract>Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/buildings11100476</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0145-507X</orcidid><orcidid>https://orcid.org/0000-0001-7489-2652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-5309
ispartof Buildings (Basel), 2021-10, Vol.11 (10), p.476, Article 476
issn 2075-5309
2075-5309
language eng
recordid cdi_proquest_journals_2584336562
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Air temperature
Building envelopes
Buildings
Case studies
Climate change
climatic index
Computational fluid dynamics
Computer applications
Construction & Building Technology
Cultural heritage
Damage assessment
degradation
durability
Engineering
Engineering, Civil
Evaporation
Evaporation rate
Fluid dynamics
Freeze-thawing
Freezing
Freezing point
Hydrodynamics
Identification methods
Melting points
Meteorological data
Moisture
Parliaments
potential evaporation
Preventive maintenance
Rain
Reynolds number
Risk
Risk assessment
Science & Technology
Simulation
Technology
Turbulence models
Velocity
Wetting
Wind
wind-driven rain
title Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Use%20of%20Wind-Driven%20Rain%20Load%20and%20Potential%20Evaporation%20to%20Evaluate%20Moisture%20Damage%20Risk:%20Case%20Study%20on%20the%20Parliament%20Buildings%20in%20Ottawa,%20Canada&rft.jtitle=Buildings%20(Basel)&rft.au=Kubilay,%20Aytac&rft.date=2021-10-01&rft.volume=11&rft.issue=10&rft.spage=476&rft.pages=476-&rft.artnum=476&rft.issn=2075-5309&rft.eissn=2075-5309&rft_id=info:doi/10.3390/buildings11100476&rft_dat=%3Cproquest_webof%3E2584336562%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584336562&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8e3bff2200da459f8d7671a1e0eaef7c&rfr_iscdi=true