Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada
Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2021-10, Vol.11 (10), p.476, Article 476 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 476 |
container_title | Buildings (Basel) |
container_volume | 11 |
creator | Kubilay, Aytac Bourcet, John Gravel, Jessica Zhou, Xiaohai Moore, Travis Lacasse, Michael A. Carmeliet, Jan Derome, Dominique |
description | Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature. |
doi_str_mv | 10.3390/buildings11100476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2584336562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8e3bff2200da459f8d7671a1e0eaef7c</doaj_id><sourcerecordid>2584336562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEElXbB-BmiSMs2I7tJNwgLVBpUatCxTGa2OPFS9be2k6rvkqfFm8XKiQuzMUz1v_9M9JfVS8YfVPXHX07zm4yzq8SY4xS0agn1QGnjVzImnZP_-qfV8cprWmpVnIuxUF134fN6DwacpWQBEu-O28WJ9HdoCeX4DxZBjAEvCEXIaPPDiZyegPbECG74EkOu3GaISP5ElzKc0RyAhtYIbl06ec70kNx_ppnc0d2-h9ILiBODjbFjXz4czopq85zhlt4XQgPBo6qZxamhMe_38Pq6uPpt_7zYnn-6ax_v1zouuV5oZXQBqTFTik-ggDaWBi7Bo1qNWUdmk50nGomOFcG0YCyWkjohO6oVE19WJ3tfU2A9bCNbgPxbgjghoePEFcDxOz0hEOL9Wgt55QaELKzrWlUw4AhRUDb6OL1cu-1jeF6xpSHdZijL-cPXLairpVUvKjYXqVjSCmifdzK6LBLdPgn0cK0e-YWx2CTdug1PnIl0YapRrF6Fy7rXX5Ipw-zzwV99f9o_QsTTbgO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584336562</pqid></control><display><type>article</type><title>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kubilay, Aytac ; Bourcet, John ; Gravel, Jessica ; Zhou, Xiaohai ; Moore, Travis ; Lacasse, Michael A. ; Carmeliet, Jan ; Derome, Dominique</creator><creatorcontrib>Kubilay, Aytac ; Bourcet, John ; Gravel, Jessica ; Zhou, Xiaohai ; Moore, Travis ; Lacasse, Michael A. ; Carmeliet, Jan ; Derome, Dominique</creatorcontrib><description>Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature.</description><identifier>ISSN: 2075-5309</identifier><identifier>EISSN: 2075-5309</identifier><identifier>DOI: 10.3390/buildings11100476</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Air temperature ; Building envelopes ; Buildings ; Case studies ; Climate change ; climatic index ; Computational fluid dynamics ; Computer applications ; Construction & Building Technology ; Cultural heritage ; Damage assessment ; degradation ; durability ; Engineering ; Engineering, Civil ; Evaporation ; Evaporation rate ; Fluid dynamics ; Freeze-thawing ; Freezing ; Freezing point ; Hydrodynamics ; Identification methods ; Melting points ; Meteorological data ; Moisture ; Parliaments ; potential evaporation ; Preventive maintenance ; Rain ; Reynolds number ; Risk ; Risk assessment ; Science & Technology ; Simulation ; Technology ; Turbulence models ; Velocity ; Wetting ; Wind ; wind-driven rain</subject><ispartof>Buildings (Basel), 2021-10, Vol.11 (10), p.476, Article 476</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000716761300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</citedby><cites>FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</cites><orcidid>0000-0002-0145-507X ; 0000-0001-7489-2652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Kubilay, Aytac</creatorcontrib><creatorcontrib>Bourcet, John</creatorcontrib><creatorcontrib>Gravel, Jessica</creatorcontrib><creatorcontrib>Zhou, Xiaohai</creatorcontrib><creatorcontrib>Moore, Travis</creatorcontrib><creatorcontrib>Lacasse, Michael A.</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><creatorcontrib>Derome, Dominique</creatorcontrib><title>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</title><title>Buildings (Basel)</title><addtitle>BUILDINGS-BASEL</addtitle><description>Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature.</description><subject>Air temperature</subject><subject>Building envelopes</subject><subject>Buildings</subject><subject>Case studies</subject><subject>Climate change</subject><subject>climatic index</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Construction & Building Technology</subject><subject>Cultural heritage</subject><subject>Damage assessment</subject><subject>degradation</subject><subject>durability</subject><subject>Engineering</subject><subject>Engineering, Civil</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Fluid dynamics</subject><subject>Freeze-thawing</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>Hydrodynamics</subject><subject>Identification methods</subject><subject>Melting points</subject><subject>Meteorological data</subject><subject>Moisture</subject><subject>Parliaments</subject><subject>potential evaporation</subject><subject>Preventive maintenance</subject><subject>Rain</subject><subject>Reynolds number</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Technology</subject><subject>Turbulence models</subject><subject>Velocity</subject><subject>Wetting</subject><subject>Wind</subject><subject>wind-driven rain</subject><issn>2075-5309</issn><issn>2075-5309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFu1DAQhiMEElXbB-BmiSMs2I7tJNwgLVBpUatCxTGa2OPFS9be2k6rvkqfFm8XKiQuzMUz1v_9M9JfVS8YfVPXHX07zm4yzq8SY4xS0agn1QGnjVzImnZP_-qfV8cprWmpVnIuxUF134fN6DwacpWQBEu-O28WJ9HdoCeX4DxZBjAEvCEXIaPPDiZyegPbECG74EkOu3GaISP5ElzKc0RyAhtYIbl06ec70kNx_ppnc0d2-h9ILiBODjbFjXz4czopq85zhlt4XQgPBo6qZxamhMe_38Pq6uPpt_7zYnn-6ax_v1zouuV5oZXQBqTFTik-ggDaWBi7Bo1qNWUdmk50nGomOFcG0YCyWkjohO6oVE19WJ3tfU2A9bCNbgPxbgjghoePEFcDxOz0hEOL9Wgt55QaELKzrWlUw4AhRUDb6OL1cu-1jeF6xpSHdZijL-cPXLairpVUvKjYXqVjSCmifdzK6LBLdPgn0cK0e-YWx2CTdug1PnIl0YapRrF6Fy7rXX5Ipw-zzwV99f9o_QsTTbgO</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kubilay, Aytac</creator><creator>Bourcet, John</creator><creator>Gravel, Jessica</creator><creator>Zhou, Xiaohai</creator><creator>Moore, Travis</creator><creator>Lacasse, Michael A.</creator><creator>Carmeliet, Jan</creator><creator>Derome, Dominique</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0145-507X</orcidid><orcidid>https://orcid.org/0000-0001-7489-2652</orcidid></search><sort><creationdate>20211001</creationdate><title>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</title><author>Kubilay, Aytac ; Bourcet, John ; Gravel, Jessica ; Zhou, Xiaohai ; Moore, Travis ; Lacasse, Michael A. ; Carmeliet, Jan ; Derome, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c64cda5fe9662ba4a07fab97ed68c019ed94920c14226deeda6fc45a94c905673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Building envelopes</topic><topic>Buildings</topic><topic>Case studies</topic><topic>Climate change</topic><topic>climatic index</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Construction & Building Technology</topic><topic>Cultural heritage</topic><topic>Damage assessment</topic><topic>degradation</topic><topic>durability</topic><topic>Engineering</topic><topic>Engineering, Civil</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Fluid dynamics</topic><topic>Freeze-thawing</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>Hydrodynamics</topic><topic>Identification methods</topic><topic>Melting points</topic><topic>Meteorological data</topic><topic>Moisture</topic><topic>Parliaments</topic><topic>potential evaporation</topic><topic>Preventive maintenance</topic><topic>Rain</topic><topic>Reynolds number</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Technology</topic><topic>Turbulence models</topic><topic>Velocity</topic><topic>Wetting</topic><topic>Wind</topic><topic>wind-driven rain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubilay, Aytac</creatorcontrib><creatorcontrib>Bourcet, John</creatorcontrib><creatorcontrib>Gravel, Jessica</creatorcontrib><creatorcontrib>Zhou, Xiaohai</creatorcontrib><creatorcontrib>Moore, Travis</creatorcontrib><creatorcontrib>Lacasse, Michael A.</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><creatorcontrib>Derome, Dominique</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Buildings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubilay, Aytac</au><au>Bourcet, John</au><au>Gravel, Jessica</au><au>Zhou, Xiaohai</au><au>Moore, Travis</au><au>Lacasse, Michael A.</au><au>Carmeliet, Jan</au><au>Derome, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada</atitle><jtitle>Buildings (Basel)</jtitle><stitle>BUILDINGS-BASEL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>10</issue><spage>476</spage><pages>476-</pages><artnum>476</artnum><issn>2075-5309</issn><eissn>2075-5309</eissn><abstract>Parts of the building envelope that frequently receive high amounts of rain are usually exposed to a higher risk of deterioration due to moisture. Determination of such locations can thus help with the assessment of moisture-induced damage risks. This study performs computational fluid dynamics (CFD) simulations of wind-driven rain (WDR) on the Parliament buildings in Ottawa, Canada. Long-term time-varying wetting load due to WDR and potential evaporation are considered according to several years of meteorological data, and this cumulative assessment is proposed as a fast method to identify critical locations and periods. The results show that, on the Center Block of the Parliament buildings, the facades of lower towers facing east are the most exposed to WDR, together with the corners of the main tower. Periods of high WDR wetting load larger than the potential evaporation are observed, indicating that deposited rain may lead to moisture accumulation in the envelope. During these critical periods of up to several months, air temperature may repeatedly drop below freezing point, which poses a risk of freeze-thaw damage. First assessment on future freeze-thaw damage risks indicates an increase in such risks at moderate increases in temperature, but a lower risk is found for larger increases in temperature.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/buildings11100476</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0145-507X</orcidid><orcidid>https://orcid.org/0000-0001-7489-2652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-5309 |
ispartof | Buildings (Basel), 2021-10, Vol.11 (10), p.476, Article 476 |
issn | 2075-5309 2075-5309 |
language | eng |
recordid | cdi_proquest_journals_2584336562 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Air temperature Building envelopes Buildings Case studies Climate change climatic index Computational fluid dynamics Computer applications Construction & Building Technology Cultural heritage Damage assessment degradation durability Engineering Engineering, Civil Evaporation Evaporation rate Fluid dynamics Freeze-thawing Freezing Freezing point Hydrodynamics Identification methods Melting points Meteorological data Moisture Parliaments potential evaporation Preventive maintenance Rain Reynolds number Risk Risk assessment Science & Technology Simulation Technology Turbulence models Velocity Wetting Wind wind-driven rain |
title | Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Use%20of%20Wind-Driven%20Rain%20Load%20and%20Potential%20Evaporation%20to%20Evaluate%20Moisture%20Damage%20Risk:%20Case%20Study%20on%20the%20Parliament%20Buildings%20in%20Ottawa,%20Canada&rft.jtitle=Buildings%20(Basel)&rft.au=Kubilay,%20Aytac&rft.date=2021-10-01&rft.volume=11&rft.issue=10&rft.spage=476&rft.pages=476-&rft.artnum=476&rft.issn=2075-5309&rft.eissn=2075-5309&rft_id=info:doi/10.3390/buildings11100476&rft_dat=%3Cproquest_webof%3E2584336562%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584336562&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8e3bff2200da459f8d7671a1e0eaef7c&rfr_iscdi=true |