Temperature‐Dependent Adhesion in van der Waals Heterostructures

The interlayer coupling between 2D materials is immensely important for both the fundamental understanding of these systems, and for the development of transfer techniques for the fabrication of van der Waals (vdW) heterostructures. A number of uncertainties remain with respect to their adhesion cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2021-10, Vol.8 (20), p.n/a
Hauptverfasser: Polfus, Jonathan M., Muñiz, Marta Benthem, Ali, Ayaz, Barragan‐Yani, Daniel A., Vullum, Per Erik, Sunding, Martin F., Taniguchi, Takashi, Watanabe, Kenji, Belle, Branson D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced materials interfaces
container_volume 8
creator Polfus, Jonathan M.
Muñiz, Marta Benthem
Ali, Ayaz
Barragan‐Yani, Daniel A.
Vullum, Per Erik
Sunding, Martin F.
Taniguchi, Takashi
Watanabe, Kenji
Belle, Branson D.
description The interlayer coupling between 2D materials is immensely important for both the fundamental understanding of these systems, and for the development of transfer techniques for the fabrication of van der Waals (vdW) heterostructures. A number of uncertainties remain with respect to their adhesion characteristics due to the elusive nature of measured adhesion interactions. Moreover, it is theoretically predicted that the intrinsic ripples in 2D materials give rise to a temperature dependence in adhesion, although the vdW interactions themselves are principally independent of temperature. Here, direct measurements of the adhesion between reduced graphene oxide – coated by solution deposition on atomic force microscopy tips – and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes are presented. The in situ nanomechanical characterization reveals a prominent reduction in the adhesion energies with increasing temperature which is ascribed to the thermally induced ripples in the 2D materials. Direct measurements of interlayer adhesion in van der Waals heterostructures are performed between graphene oxide, coated on atomic force microscopy tips, and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes. The in situ measurements reveal a prominent influence of temperature on the adhesion energies which is ascribed to the thermally induced ripples in the 2D materials.
doi_str_mv 10.1002/admi.202100838
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584223134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584223134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-42d795e2e4b2634a2b35011e0a451bd3f53ed7074dcb562ddf152a903d4a2add3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EElXpyhyJOcU-200ylhZopSKWIkbLyV1EqjYJdgJi4xF4Rp4EV0XAxnR_9P3uPn2MnQs-FpzDpcVdNQYOYUhlesQGILJJnEjNj__0p2zk_YZzLgQISOWAXa1p15KzXe_o8_1jTi3VSHUXTfGJfNXUUVVHL7aOkFz0aO3WRwvqyDW-c32xp_wZOynDnkbfdcgebq7Xs0W8ur9dzqaruJA6SWMFmGSagFQOE6ks5MGQEMSt0iJHWWpJmPBEYZHrCSCWQoPNuMSgtYhyyC4Od1vXPPfkO7NpeleHlwZ0qgCkkCqoxgdVETx6R6VpXbWz7s0IbvZRmX1U5ieqAGQH4LXa0ts_ajOd3y1_2S9zfm10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584223134</pqid></control><display><type>article</type><title>Temperature‐Dependent Adhesion in van der Waals Heterostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Polfus, Jonathan M. ; Muñiz, Marta Benthem ; Ali, Ayaz ; Barragan‐Yani, Daniel A. ; Vullum, Per Erik ; Sunding, Martin F. ; Taniguchi, Takashi ; Watanabe, Kenji ; Belle, Branson D.</creator><creatorcontrib>Polfus, Jonathan M. ; Muñiz, Marta Benthem ; Ali, Ayaz ; Barragan‐Yani, Daniel A. ; Vullum, Per Erik ; Sunding, Martin F. ; Taniguchi, Takashi ; Watanabe, Kenji ; Belle, Branson D.</creatorcontrib><description>The interlayer coupling between 2D materials is immensely important for both the fundamental understanding of these systems, and for the development of transfer techniques for the fabrication of van der Waals (vdW) heterostructures. A number of uncertainties remain with respect to their adhesion characteristics due to the elusive nature of measured adhesion interactions. Moreover, it is theoretically predicted that the intrinsic ripples in 2D materials give rise to a temperature dependence in adhesion, although the vdW interactions themselves are principally independent of temperature. Here, direct measurements of the adhesion between reduced graphene oxide – coated by solution deposition on atomic force microscopy tips – and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes are presented. The in situ nanomechanical characterization reveals a prominent reduction in the adhesion energies with increasing temperature which is ascribed to the thermally induced ripples in the 2D materials. Direct measurements of interlayer adhesion in van der Waals heterostructures are performed between graphene oxide, coated on atomic force microscopy tips, and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes. The in situ measurements reveal a prominent influence of temperature on the adhesion energies which is ascribed to the thermally induced ripples in the 2D materials.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202100838</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>2D materials ; adhesion energy ; Atomic force microscopy ; Graphene ; Heterostructures ; Interlayers ; Ripples ; Silicon dioxide ; Substrates ; Temperature dependence ; Two dimensional materials ; van der Waals transfer</subject><ispartof>Advanced materials interfaces, 2021-10, Vol.8 (20), p.n/a</ispartof><rights>2021 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-42d795e2e4b2634a2b35011e0a451bd3f53ed7074dcb562ddf152a903d4a2add3</citedby><cites>FETCH-LOGICAL-c3578-42d795e2e4b2634a2b35011e0a451bd3f53ed7074dcb562ddf152a903d4a2add3</cites><orcidid>0000-0002-8975-185X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202100838$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202100838$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Polfus, Jonathan M.</creatorcontrib><creatorcontrib>Muñiz, Marta Benthem</creatorcontrib><creatorcontrib>Ali, Ayaz</creatorcontrib><creatorcontrib>Barragan‐Yani, Daniel A.</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><creatorcontrib>Sunding, Martin F.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Belle, Branson D.</creatorcontrib><title>Temperature‐Dependent Adhesion in van der Waals Heterostructures</title><title>Advanced materials interfaces</title><description>The interlayer coupling between 2D materials is immensely important for both the fundamental understanding of these systems, and for the development of transfer techniques for the fabrication of van der Waals (vdW) heterostructures. A number of uncertainties remain with respect to their adhesion characteristics due to the elusive nature of measured adhesion interactions. Moreover, it is theoretically predicted that the intrinsic ripples in 2D materials give rise to a temperature dependence in adhesion, although the vdW interactions themselves are principally independent of temperature. Here, direct measurements of the adhesion between reduced graphene oxide – coated by solution deposition on atomic force microscopy tips – and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes are presented. The in situ nanomechanical characterization reveals a prominent reduction in the adhesion energies with increasing temperature which is ascribed to the thermally induced ripples in the 2D materials. Direct measurements of interlayer adhesion in van der Waals heterostructures are performed between graphene oxide, coated on atomic force microscopy tips, and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes. The in situ measurements reveal a prominent influence of temperature on the adhesion energies which is ascribed to the thermally induced ripples in the 2D materials.</description><subject>2D materials</subject><subject>adhesion energy</subject><subject>Atomic force microscopy</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Ripples</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Temperature dependence</subject><subject>Two dimensional materials</subject><subject>van der Waals transfer</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL9OwzAQxi0EElXpyhyJOcU-200ylhZopSKWIkbLyV1EqjYJdgJi4xF4Rp4EV0XAxnR_9P3uPn2MnQs-FpzDpcVdNQYOYUhlesQGILJJnEjNj__0p2zk_YZzLgQISOWAXa1p15KzXe_o8_1jTi3VSHUXTfGJfNXUUVVHL7aOkFz0aO3WRwvqyDW-c32xp_wZOynDnkbfdcgebq7Xs0W8ur9dzqaruJA6SWMFmGSagFQOE6ks5MGQEMSt0iJHWWpJmPBEYZHrCSCWQoPNuMSgtYhyyC4Od1vXPPfkO7NpeleHlwZ0qgCkkCqoxgdVETx6R6VpXbWz7s0IbvZRmX1U5ieqAGQH4LXa0ts_ajOd3y1_2S9zfm10</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Polfus, Jonathan M.</creator><creator>Muñiz, Marta Benthem</creator><creator>Ali, Ayaz</creator><creator>Barragan‐Yani, Daniel A.</creator><creator>Vullum, Per Erik</creator><creator>Sunding, Martin F.</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Belle, Branson D.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8975-185X</orcidid></search><sort><creationdate>20211001</creationdate><title>Temperature‐Dependent Adhesion in van der Waals Heterostructures</title><author>Polfus, Jonathan M. ; Muñiz, Marta Benthem ; Ali, Ayaz ; Barragan‐Yani, Daniel A. ; Vullum, Per Erik ; Sunding, Martin F. ; Taniguchi, Takashi ; Watanabe, Kenji ; Belle, Branson D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-42d795e2e4b2634a2b35011e0a451bd3f53ed7074dcb562ddf152a903d4a2add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>adhesion energy</topic><topic>Atomic force microscopy</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Ripples</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Temperature dependence</topic><topic>Two dimensional materials</topic><topic>van der Waals transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polfus, Jonathan M.</creatorcontrib><creatorcontrib>Muñiz, Marta Benthem</creatorcontrib><creatorcontrib>Ali, Ayaz</creatorcontrib><creatorcontrib>Barragan‐Yani, Daniel A.</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><creatorcontrib>Sunding, Martin F.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Belle, Branson D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polfus, Jonathan M.</au><au>Muñiz, Marta Benthem</au><au>Ali, Ayaz</au><au>Barragan‐Yani, Daniel A.</au><au>Vullum, Per Erik</au><au>Sunding, Martin F.</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Belle, Branson D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature‐Dependent Adhesion in van der Waals Heterostructures</atitle><jtitle>Advanced materials interfaces</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>8</volume><issue>20</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The interlayer coupling between 2D materials is immensely important for both the fundamental understanding of these systems, and for the development of transfer techniques for the fabrication of van der Waals (vdW) heterostructures. A number of uncertainties remain with respect to their adhesion characteristics due to the elusive nature of measured adhesion interactions. Moreover, it is theoretically predicted that the intrinsic ripples in 2D materials give rise to a temperature dependence in adhesion, although the vdW interactions themselves are principally independent of temperature. Here, direct measurements of the adhesion between reduced graphene oxide – coated by solution deposition on atomic force microscopy tips – and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes are presented. The in situ nanomechanical characterization reveals a prominent reduction in the adhesion energies with increasing temperature which is ascribed to the thermally induced ripples in the 2D materials. Direct measurements of interlayer adhesion in van der Waals heterostructures are performed between graphene oxide, coated on atomic force microscopy tips, and graphene, h‐BN, and MoS2 supported on SiO2 substrates and as freestanding membranes. The in situ measurements reveal a prominent influence of temperature on the adhesion energies which is ascribed to the thermally induced ripples in the 2D materials.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.202100838</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8975-185X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2021-10, Vol.8 (20), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2584223134
source Wiley Online Library Journals Frontfile Complete
subjects 2D materials
adhesion energy
Atomic force microscopy
Graphene
Heterostructures
Interlayers
Ripples
Silicon dioxide
Substrates
Temperature dependence
Two dimensional materials
van der Waals transfer
title Temperature‐Dependent Adhesion in van der Waals Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%E2%80%90Dependent%20Adhesion%20in%20van%20der%20Waals%20Heterostructures&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Polfus,%20Jonathan%20M.&rft.date=2021-10-01&rft.volume=8&rft.issue=20&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202100838&rft_dat=%3Cproquest_cross%3E2584223134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584223134&rft_id=info:pmid/&rfr_iscdi=true