Estimating fine‐scale movement rates and habitat preferences using multiple data sources

Fisheries scientists and managers must track rapid shifts in fish spatial distribution to mitigate stakeholder conflict and optimize survey designs, and these spatial shifts result in part from animal movement. Information regarding animal movement can be obtained from selection experiments, tagging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish and fisheries (Oxford, England) England), 2021-11, Vol.22 (6), p.1359-1376
Hauptverfasser: Thorson, James T., Barbeaux, Steven J., Goethel, Daniel R., Kearney, Kelly A., Laman, Edward A., Nielsen, Julie K., Siskey, Matthew R., Siwicke, Kevin, Thompson, Grant G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1376
container_issue 6
container_start_page 1359
container_title Fish and fisheries (Oxford, England)
container_volume 22
creator Thorson, James T.
Barbeaux, Steven J.
Goethel, Daniel R.
Kearney, Kelly A.
Laman, Edward A.
Nielsen, Julie K.
Siskey, Matthew R.
Siwicke, Kevin
Thompson, Grant G.
description Fisheries scientists and managers must track rapid shifts in fish spatial distribution to mitigate stakeholder conflict and optimize survey designs, and these spatial shifts result in part from animal movement. Information regarding animal movement can be obtained from selection experiments, tagging studies, flux through movement gates (e.g. acoustic arrays), fishery catch‐per‐unit effort (CPUE), resource surveys and genetic/chemical markers. However, there are few accessible approaches to combine these data types while accounting for spatially correlated residual patterns. We therefore discuss a movement model involving diffusion (random movement), taxis (movement towards preferred habitat) and advection (passive drift following ocean currents). We specifically outline how these movement processes can be fitted to data while discretizing space and time and estimating non‐linear habitat preferences using environmental layers as well as spatial process errors. Finally, we introduce an R package, ATM, by fitting the model to bottom trawl survey, longline fishery and tagging data for Pacific cod (Gadus macrocephalus, Gadidae) in the Bering Sea during winter/summer seasons from 1982 to 2019. Combining data types predicts an increasing proportion of cod residing in the northern Bering Sea from 2013 to 2019, and estimates are informative in a recent stock assessment model. We fit sensitivity analyses by dropping tag, survey or fishery data, and this analysis shows that tagging data are necessary to identify diffusion rates, while survey data are informative about movement among biogeographic strata. This “hybrid” species distribution model can help explain poleward movement, project distributions under future climate conditions and evaluate alternative tag‐deployment scenarios to optimize tagging designs.
doi_str_mv 10.1111/faf.12592
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584205481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584205481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3632-2ecacc730a64eae65e502b049b5db3f121aea8ee5aa187b80f5ca9154bc463223</originalsourceid><addsrcrecordid>eNp1kDtOAzEQhi0EEiFQcANLVBSb2F57H2UUJYAUiQYaGmvWmYWN9oXtBaXjCJyRk-CwiA43Y818_zx-Qi45m_Hw5iWUMy5ULo7IhMskjUSe5sd__4SdkjPndoyxJONyQp5WzlcN-Kp9pmXV4tfHpzNQI226N2yw9dSCR0eh3dIXKCoPnvYWS7TYmpAf3EHZDLWv-qDaggfqusGG2jk5KaF2ePEbp-RxvXpY3kab-5u75WITmTiJRSTQgDFpzCCRCJgoVEwUTOaF2hZxyQUHhAxRAfAsLTJWKgM5V7IwMuhFPCVXY9_edq8DOq93YYE2jNRCZVIwJTMeqOuRMrZzLlygexsOt3vNmT5Yp4N1-se6wM5H9r2qcf8_qNeL9aj4Bqy0cg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584205481</pqid></control><display><type>article</type><title>Estimating fine‐scale movement rates and habitat preferences using multiple data sources</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Thorson, James T. ; Barbeaux, Steven J. ; Goethel, Daniel R. ; Kearney, Kelly A. ; Laman, Edward A. ; Nielsen, Julie K. ; Siskey, Matthew R. ; Siwicke, Kevin ; Thompson, Grant G.</creator><creatorcontrib>Thorson, James T. ; Barbeaux, Steven J. ; Goethel, Daniel R. ; Kearney, Kelly A. ; Laman, Edward A. ; Nielsen, Julie K. ; Siskey, Matthew R. ; Siwicke, Kevin ; Thompson, Grant G.</creatorcontrib><description>Fisheries scientists and managers must track rapid shifts in fish spatial distribution to mitigate stakeholder conflict and optimize survey designs, and these spatial shifts result in part from animal movement. Information regarding animal movement can be obtained from selection experiments, tagging studies, flux through movement gates (e.g. acoustic arrays), fishery catch‐per‐unit effort (CPUE), resource surveys and genetic/chemical markers. However, there are few accessible approaches to combine these data types while accounting for spatially correlated residual patterns. We therefore discuss a movement model involving diffusion (random movement), taxis (movement towards preferred habitat) and advection (passive drift following ocean currents). We specifically outline how these movement processes can be fitted to data while discretizing space and time and estimating non‐linear habitat preferences using environmental layers as well as spatial process errors. Finally, we introduce an R package, ATM, by fitting the model to bottom trawl survey, longline fishery and tagging data for Pacific cod (Gadus macrocephalus, Gadidae) in the Bering Sea during winter/summer seasons from 1982 to 2019. Combining data types predicts an increasing proportion of cod residing in the northern Bering Sea from 2013 to 2019, and estimates are informative in a recent stock assessment model. We fit sensitivity analyses by dropping tag, survey or fishery data, and this analysis shows that tagging data are necessary to identify diffusion rates, while survey data are informative about movement among biogeographic strata. This “hybrid” species distribution model can help explain poleward movement, project distributions under future climate conditions and evaluate alternative tag‐deployment scenarios to optimize tagging designs.</description><identifier>ISSN: 1467-2960</identifier><identifier>EISSN: 1467-2979</identifier><identifier>DOI: 10.1111/faf.12592</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acoustic arrays ; advection ; Benthos collecting devices ; Bottom trawling ; Catch per unit effort ; Climatic conditions ; Diffusion ; Diffusion layers ; Diffusion rate ; Ecological distribution ; Estimation ; Fish ; Fisheries ; Fisheries management ; Fisheries surveys ; Fishery data ; Gadus macrocephalus ; Geographical distribution ; habitat preference ; Habitat preferences ; Habitat selection ; Habitats ; instantaneous movement ; Longline fishing ; Marking ; Ocean currents ; Pacific cod ; Resource surveys ; Sensitivity analysis ; Spatial distribution ; Stock assessment ; Surveying ; Tagging ; Taxis</subject><ispartof>Fish and fisheries (Oxford, England), 2021-11, Vol.22 (6), p.1359-1376</ispartof><rights>2021 John Wiley &amp; Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3632-2ecacc730a64eae65e502b049b5db3f121aea8ee5aa187b80f5ca9154bc463223</citedby><cites>FETCH-LOGICAL-c3632-2ecacc730a64eae65e502b049b5db3f121aea8ee5aa187b80f5ca9154bc463223</cites><orcidid>0000-0001-7415-1010 ; 0000-0002-3240-6705 ; 0000-0003-0066-431X ; 0000-0002-8384-4158 ; 0000-0001-9498-0369 ; 0000-0003-4555-5272 ; 0000-0002-7834-4749 ; 0000-0003-2663-9243 ; 0000-0002-6152-5236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffaf.12592$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffaf.12592$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Thorson, James T.</creatorcontrib><creatorcontrib>Barbeaux, Steven J.</creatorcontrib><creatorcontrib>Goethel, Daniel R.</creatorcontrib><creatorcontrib>Kearney, Kelly A.</creatorcontrib><creatorcontrib>Laman, Edward A.</creatorcontrib><creatorcontrib>Nielsen, Julie K.</creatorcontrib><creatorcontrib>Siskey, Matthew R.</creatorcontrib><creatorcontrib>Siwicke, Kevin</creatorcontrib><creatorcontrib>Thompson, Grant G.</creatorcontrib><title>Estimating fine‐scale movement rates and habitat preferences using multiple data sources</title><title>Fish and fisheries (Oxford, England)</title><description>Fisheries scientists and managers must track rapid shifts in fish spatial distribution to mitigate stakeholder conflict and optimize survey designs, and these spatial shifts result in part from animal movement. Information regarding animal movement can be obtained from selection experiments, tagging studies, flux through movement gates (e.g. acoustic arrays), fishery catch‐per‐unit effort (CPUE), resource surveys and genetic/chemical markers. However, there are few accessible approaches to combine these data types while accounting for spatially correlated residual patterns. We therefore discuss a movement model involving diffusion (random movement), taxis (movement towards preferred habitat) and advection (passive drift following ocean currents). We specifically outline how these movement processes can be fitted to data while discretizing space and time and estimating non‐linear habitat preferences using environmental layers as well as spatial process errors. Finally, we introduce an R package, ATM, by fitting the model to bottom trawl survey, longline fishery and tagging data for Pacific cod (Gadus macrocephalus, Gadidae) in the Bering Sea during winter/summer seasons from 1982 to 2019. Combining data types predicts an increasing proportion of cod residing in the northern Bering Sea from 2013 to 2019, and estimates are informative in a recent stock assessment model. We fit sensitivity analyses by dropping tag, survey or fishery data, and this analysis shows that tagging data are necessary to identify diffusion rates, while survey data are informative about movement among biogeographic strata. This “hybrid” species distribution model can help explain poleward movement, project distributions under future climate conditions and evaluate alternative tag‐deployment scenarios to optimize tagging designs.</description><subject>Acoustic arrays</subject><subject>advection</subject><subject>Benthos collecting devices</subject><subject>Bottom trawling</subject><subject>Catch per unit effort</subject><subject>Climatic conditions</subject><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Ecological distribution</subject><subject>Estimation</subject><subject>Fish</subject><subject>Fisheries</subject><subject>Fisheries management</subject><subject>Fisheries surveys</subject><subject>Fishery data</subject><subject>Gadus macrocephalus</subject><subject>Geographical distribution</subject><subject>habitat preference</subject><subject>Habitat preferences</subject><subject>Habitat selection</subject><subject>Habitats</subject><subject>instantaneous movement</subject><subject>Longline fishing</subject><subject>Marking</subject><subject>Ocean currents</subject><subject>Pacific cod</subject><subject>Resource surveys</subject><subject>Sensitivity analysis</subject><subject>Spatial distribution</subject><subject>Stock assessment</subject><subject>Surveying</subject><subject>Tagging</subject><subject>Taxis</subject><issn>1467-2960</issn><issn>1467-2979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtOAzEQhi0EEiFQcANLVBSb2F57H2UUJYAUiQYaGmvWmYWN9oXtBaXjCJyRk-CwiA43Y818_zx-Qi45m_Hw5iWUMy5ULo7IhMskjUSe5sd__4SdkjPndoyxJONyQp5WzlcN-Kp9pmXV4tfHpzNQI226N2yw9dSCR0eh3dIXKCoPnvYWS7TYmpAf3EHZDLWv-qDaggfqusGG2jk5KaF2ePEbp-RxvXpY3kab-5u75WITmTiJRSTQgDFpzCCRCJgoVEwUTOaF2hZxyQUHhAxRAfAsLTJWKgM5V7IwMuhFPCVXY9_edq8DOq93YYE2jNRCZVIwJTMeqOuRMrZzLlygexsOt3vNmT5Yp4N1-se6wM5H9r2qcf8_qNeL9aj4Bqy0cg0</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Thorson, James T.</creator><creator>Barbeaux, Steven J.</creator><creator>Goethel, Daniel R.</creator><creator>Kearney, Kelly A.</creator><creator>Laman, Edward A.</creator><creator>Nielsen, Julie K.</creator><creator>Siskey, Matthew R.</creator><creator>Siwicke, Kevin</creator><creator>Thompson, Grant G.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7415-1010</orcidid><orcidid>https://orcid.org/0000-0002-3240-6705</orcidid><orcidid>https://orcid.org/0000-0003-0066-431X</orcidid><orcidid>https://orcid.org/0000-0002-8384-4158</orcidid><orcidid>https://orcid.org/0000-0001-9498-0369</orcidid><orcidid>https://orcid.org/0000-0003-4555-5272</orcidid><orcidid>https://orcid.org/0000-0002-7834-4749</orcidid><orcidid>https://orcid.org/0000-0003-2663-9243</orcidid><orcidid>https://orcid.org/0000-0002-6152-5236</orcidid></search><sort><creationdate>202111</creationdate><title>Estimating fine‐scale movement rates and habitat preferences using multiple data sources</title><author>Thorson, James T. ; Barbeaux, Steven J. ; Goethel, Daniel R. ; Kearney, Kelly A. ; Laman, Edward A. ; Nielsen, Julie K. ; Siskey, Matthew R. ; Siwicke, Kevin ; Thompson, Grant G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3632-2ecacc730a64eae65e502b049b5db3f121aea8ee5aa187b80f5ca9154bc463223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic arrays</topic><topic>advection</topic><topic>Benthos collecting devices</topic><topic>Bottom trawling</topic><topic>Catch per unit effort</topic><topic>Climatic conditions</topic><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Ecological distribution</topic><topic>Estimation</topic><topic>Fish</topic><topic>Fisheries</topic><topic>Fisheries management</topic><topic>Fisheries surveys</topic><topic>Fishery data</topic><topic>Gadus macrocephalus</topic><topic>Geographical distribution</topic><topic>habitat preference</topic><topic>Habitat preferences</topic><topic>Habitat selection</topic><topic>Habitats</topic><topic>instantaneous movement</topic><topic>Longline fishing</topic><topic>Marking</topic><topic>Ocean currents</topic><topic>Pacific cod</topic><topic>Resource surveys</topic><topic>Sensitivity analysis</topic><topic>Spatial distribution</topic><topic>Stock assessment</topic><topic>Surveying</topic><topic>Tagging</topic><topic>Taxis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorson, James T.</creatorcontrib><creatorcontrib>Barbeaux, Steven J.</creatorcontrib><creatorcontrib>Goethel, Daniel R.</creatorcontrib><creatorcontrib>Kearney, Kelly A.</creatorcontrib><creatorcontrib>Laman, Edward A.</creatorcontrib><creatorcontrib>Nielsen, Julie K.</creatorcontrib><creatorcontrib>Siskey, Matthew R.</creatorcontrib><creatorcontrib>Siwicke, Kevin</creatorcontrib><creatorcontrib>Thompson, Grant G.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fish and fisheries (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorson, James T.</au><au>Barbeaux, Steven J.</au><au>Goethel, Daniel R.</au><au>Kearney, Kelly A.</au><au>Laman, Edward A.</au><au>Nielsen, Julie K.</au><au>Siskey, Matthew R.</au><au>Siwicke, Kevin</au><au>Thompson, Grant G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating fine‐scale movement rates and habitat preferences using multiple data sources</atitle><jtitle>Fish and fisheries (Oxford, England)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><spage>1359</spage><epage>1376</epage><pages>1359-1376</pages><issn>1467-2960</issn><eissn>1467-2979</eissn><abstract>Fisheries scientists and managers must track rapid shifts in fish spatial distribution to mitigate stakeholder conflict and optimize survey designs, and these spatial shifts result in part from animal movement. Information regarding animal movement can be obtained from selection experiments, tagging studies, flux through movement gates (e.g. acoustic arrays), fishery catch‐per‐unit effort (CPUE), resource surveys and genetic/chemical markers. However, there are few accessible approaches to combine these data types while accounting for spatially correlated residual patterns. We therefore discuss a movement model involving diffusion (random movement), taxis (movement towards preferred habitat) and advection (passive drift following ocean currents). We specifically outline how these movement processes can be fitted to data while discretizing space and time and estimating non‐linear habitat preferences using environmental layers as well as spatial process errors. Finally, we introduce an R package, ATM, by fitting the model to bottom trawl survey, longline fishery and tagging data for Pacific cod (Gadus macrocephalus, Gadidae) in the Bering Sea during winter/summer seasons from 1982 to 2019. Combining data types predicts an increasing proportion of cod residing in the northern Bering Sea from 2013 to 2019, and estimates are informative in a recent stock assessment model. We fit sensitivity analyses by dropping tag, survey or fishery data, and this analysis shows that tagging data are necessary to identify diffusion rates, while survey data are informative about movement among biogeographic strata. This “hybrid” species distribution model can help explain poleward movement, project distributions under future climate conditions and evaluate alternative tag‐deployment scenarios to optimize tagging designs.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/faf.12592</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7415-1010</orcidid><orcidid>https://orcid.org/0000-0002-3240-6705</orcidid><orcidid>https://orcid.org/0000-0003-0066-431X</orcidid><orcidid>https://orcid.org/0000-0002-8384-4158</orcidid><orcidid>https://orcid.org/0000-0001-9498-0369</orcidid><orcidid>https://orcid.org/0000-0003-4555-5272</orcidid><orcidid>https://orcid.org/0000-0002-7834-4749</orcidid><orcidid>https://orcid.org/0000-0003-2663-9243</orcidid><orcidid>https://orcid.org/0000-0002-6152-5236</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1467-2960
ispartof Fish and fisheries (Oxford, England), 2021-11, Vol.22 (6), p.1359-1376
issn 1467-2960
1467-2979
language eng
recordid cdi_proquest_journals_2584205481
source Wiley Online Library Journals Frontfile Complete
subjects Acoustic arrays
advection
Benthos collecting devices
Bottom trawling
Catch per unit effort
Climatic conditions
Diffusion
Diffusion layers
Diffusion rate
Ecological distribution
Estimation
Fish
Fisheries
Fisheries management
Fisheries surveys
Fishery data
Gadus macrocephalus
Geographical distribution
habitat preference
Habitat preferences
Habitat selection
Habitats
instantaneous movement
Longline fishing
Marking
Ocean currents
Pacific cod
Resource surveys
Sensitivity analysis
Spatial distribution
Stock assessment
Surveying
Tagging
Taxis
title Estimating fine‐scale movement rates and habitat preferences using multiple data sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20fine%E2%80%90scale%20movement%20rates%20and%20habitat%20preferences%20using%20multiple%20data%20sources&rft.jtitle=Fish%20and%20fisheries%20(Oxford,%20England)&rft.au=Thorson,%20James%20T.&rft.date=2021-11&rft.volume=22&rft.issue=6&rft.spage=1359&rft.epage=1376&rft.pages=1359-1376&rft.issn=1467-2960&rft.eissn=1467-2979&rft_id=info:doi/10.1111/faf.12592&rft_dat=%3Cproquest_cross%3E2584205481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584205481&rft_id=info:pmid/&rfr_iscdi=true