多尺度点云噪声检测的密度分析法

当前机载激光雷达数据和影像匹配得到的点云是密集点云数据的两类主要来源,但都不可避免存在着噪声点。本文提出一种新的点云去噪算法,可适用于这两类数据中所包含的噪声点的去除。算法主要包括两步: 第1步利用多尺度的密度算法去除孤立噪声和小的簇状噪声;第2步利用三角网约束将第1步中误检测为噪声的点重新归为正常点。针对真实数据进行了剔噪试验,结果表明本文提出的基于密度分析的多尺度噪声检测算法对孤立噪声和簇状噪声都有较为效,且对于质量较差的影像匹配点云的检测也能有效处理。本文算法检测率达到97%以上。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ce hui xue bao 2015-03, Vol.44 (3), p.282
Hauptverfasser: 朱俊锋, 胡翔云, 张祖勋, 熊小东
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 282
container_title Ce hui xue bao
container_volume 44
creator 朱俊锋
胡翔云
张祖勋
熊小东
description 当前机载激光雷达数据和影像匹配得到的点云是密集点云数据的两类主要来源,但都不可避免存在着噪声点。本文提出一种新的点云去噪算法,可适用于这两类数据中所包含的噪声点的去除。算法主要包括两步: 第1步利用多尺度的密度算法去除孤立噪声和小的簇状噪声;第2步利用三角网约束将第1步中误检测为噪声的点重新归为正常点。针对真实数据进行了剔噪试验,结果表明本文提出的基于密度分析的多尺度噪声检测算法对孤立噪声和簇状噪声都有较为效,且对于质量较差的影像匹配点云的检测也能有效处理。本文算法检测率达到97%以上。
doi_str_mv 10.11947/j.AGCS.2015.20130423
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2584018498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584018498</sourcerecordid><originalsourceid>FETCH-proquest_journals_25840184983</originalsourceid><addsrcrecordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwNAURxgYmRsZMDJyGBgaGuoamlqYsSGwOBq7i4iwDA1MLEzNTTgbdp0tmPd2w6-muZc-bdj7ZNfHpzFVPF294trjh2dbu57Nanq5vA0o97Wh7Nm_Cs81TeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3ghogYGhhYmlhTFxqgAxrkjG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584018498</pqid></control><display><type>article</type><title>多尺度点云噪声检测的密度分析法</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>朱俊锋 ; 胡翔云 ; 张祖勋 ; 熊小东</creator><creatorcontrib>朱俊锋 ; 胡翔云 ; 张祖勋 ; 熊小东</creatorcontrib><description>当前机载激光雷达数据和影像匹配得到的点云是密集点云数据的两类主要来源,但都不可避免存在着噪声点。本文提出一种新的点云去噪算法,可适用于这两类数据中所包含的噪声点的去除。算法主要包括两步: 第1步利用多尺度的密度算法去除孤立噪声和小的簇状噪声;第2步利用三角网约束将第1步中误检测为噪声的点重新归为正常点。针对真实数据进行了剔噪试验,结果表明本文提出的基于密度分析的多尺度噪声检测算法对孤立噪声和簇状噪声都有较为效,且对于质量较差的影像匹配点云的检测也能有效处理。本文算法检测率达到97%以上。</description><identifier>ISSN: 1001-1595</identifier><identifier>EISSN: 1001-1595</identifier><identifier>DOI: 10.11947/j.AGCS.2015.20130423</identifier><language>chi ; eng</language><publisher>Beijing: Surveying and Mapping Press</publisher><subject>Airborne lasers ; Data analysis ; Density ; Image processing ; Image quality ; Laser applications ; Matching ; Outliers (statistics) ; Scanning</subject><ispartof>Ce hui xue bao, 2015-03, Vol.44 (3), p.282</ispartof><rights>Mar 2015. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>朱俊锋</creatorcontrib><creatorcontrib>胡翔云</creatorcontrib><creatorcontrib>张祖勋</creatorcontrib><creatorcontrib>熊小东</creatorcontrib><title>多尺度点云噪声检测的密度分析法</title><title>Ce hui xue bao</title><description>当前机载激光雷达数据和影像匹配得到的点云是密集点云数据的两类主要来源,但都不可避免存在着噪声点。本文提出一种新的点云去噪算法,可适用于这两类数据中所包含的噪声点的去除。算法主要包括两步: 第1步利用多尺度的密度算法去除孤立噪声和小的簇状噪声;第2步利用三角网约束将第1步中误检测为噪声的点重新归为正常点。针对真实数据进行了剔噪试验,结果表明本文提出的基于密度分析的多尺度噪声检测算法对孤立噪声和簇状噪声都有较为效,且对于质量较差的影像匹配点云的检测也能有效处理。本文算法检测率达到97%以上。</description><subject>Airborne lasers</subject><subject>Data analysis</subject><subject>Density</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Laser applications</subject><subject>Matching</subject><subject>Outliers (statistics)</subject><subject>Scanning</subject><issn>1001-1595</issn><issn>1001-1595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwNAURxgYmRsZMDJyGBgaGuoamlqYsSGwOBq7i4iwDA1MLEzNTTgbdp0tmPd2w6-muZc-bdj7ZNfHpzFVPF294trjh2dbu57Nanq5vA0o97Wh7Nm_Cs81TeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3ghogYGhhYmlhTFxqgAxrkjG</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>朱俊锋</creator><creator>胡翔云</creator><creator>张祖勋</creator><creator>熊小东</creator><general>Surveying and Mapping Press</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20150301</creationdate><title>多尺度点云噪声检测的密度分析法</title><author>朱俊锋 ; 胡翔云 ; 张祖勋 ; 熊小东</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25840184983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2015</creationdate><topic>Airborne lasers</topic><topic>Data analysis</topic><topic>Density</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Laser applications</topic><topic>Matching</topic><topic>Outliers (statistics)</topic><topic>Scanning</topic><toplevel>online_resources</toplevel><creatorcontrib>朱俊锋</creatorcontrib><creatorcontrib>胡翔云</creatorcontrib><creatorcontrib>张祖勋</creatorcontrib><creatorcontrib>熊小东</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Ce hui xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>朱俊锋</au><au>胡翔云</au><au>张祖勋</au><au>熊小东</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>多尺度点云噪声检测的密度分析法</atitle><jtitle>Ce hui xue bao</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>44</volume><issue>3</issue><spage>282</spage><pages>282-</pages><issn>1001-1595</issn><eissn>1001-1595</eissn><abstract>当前机载激光雷达数据和影像匹配得到的点云是密集点云数据的两类主要来源,但都不可避免存在着噪声点。本文提出一种新的点云去噪算法,可适用于这两类数据中所包含的噪声点的去除。算法主要包括两步: 第1步利用多尺度的密度算法去除孤立噪声和小的簇状噪声;第2步利用三角网约束将第1步中误检测为噪声的点重新归为正常点。针对真实数据进行了剔噪试验,结果表明本文提出的基于密度分析的多尺度噪声检测算法对孤立噪声和簇状噪声都有较为效,且对于质量较差的影像匹配点云的检测也能有效处理。本文算法检测率达到97%以上。</abstract><cop>Beijing</cop><pub>Surveying and Mapping Press</pub><doi>10.11947/j.AGCS.2015.20130423</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-1595
ispartof Ce hui xue bao, 2015-03, Vol.44 (3), p.282
issn 1001-1595
1001-1595
language chi ; eng
recordid cdi_proquest_journals_2584018498
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Airborne lasers
Data analysis
Density
Image processing
Image quality
Laser applications
Matching
Outliers (statistics)
Scanning
title 多尺度点云噪声检测的密度分析法
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%A4%9A%E5%B0%BA%E5%BA%A6%E7%82%B9%E4%BA%91%E5%99%AA%E5%A3%B0%E6%A3%80%E6%B5%8B%E7%9A%84%E5%AF%86%E5%BA%A6%E5%88%86%E6%9E%90%E6%B3%95&rft.jtitle=Ce%20hui%20xue%20bao&rft.au=%E6%9C%B1%E4%BF%8A%E9%94%8B&rft.date=2015-03-01&rft.volume=44&rft.issue=3&rft.spage=282&rft.pages=282-&rft.issn=1001-1595&rft.eissn=1001-1595&rft_id=info:doi/10.11947/j.AGCS.2015.20130423&rft_dat=%3Cproquest%3E2584018498%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584018498&rft_id=info:pmid/&rfr_iscdi=true