Life Cycle Analysis of Strengthening Existing RC Structures with R-PE-UHPFRC

(PE)-UHPFRC, a novel strain hardening ultra high-performance fiber reinforced concrete (UHPFRC) with low clinker content, using Ultra-High Molecular Weight Polyethylene (UHMW-PE) fibers, was developed for structural applications of rehabilitation. A comprehensive life cycle assessment (LCA) was carr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-12, Vol.11 (24), p.6923
Hauptverfasser: Hajiesmaeili, Amir, Pittau, Francesco, Denarié, Emmanuel, Habert, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(PE)-UHPFRC, a novel strain hardening ultra high-performance fiber reinforced concrete (UHPFRC) with low clinker content, using Ultra-High Molecular Weight Polyethylene (UHMW-PE) fibers, was developed for structural applications of rehabilitation. A comprehensive life cycle assessment (LCA) was carried out to study the environmental impact of interventions on an existing bridge using PE-UHPFRC compared with conventional UHPFRC and post-tensioned reinforced concrete methods in three categories of global warming potential (GWP), cumulative energy demand (CED), and ecological scarcity (UBP). The results showed 55% and 29% decreases in the environmental impact of the PE-UHPFRC compared with reinforced concrete and conventional UHPFRC methods, respectively, which highlighted the effectiveness of this material for the rehabilitation/strengthening of structures from the viewpoint of environmental impact.
ISSN:2071-1050
2071-1050
DOI:10.3390/su11246923