道路网多特征匹配优化算法
同名道路匹配技术是道路数据集成、更新和融合的重要前提。道路网匹配在智能交通(intelligent transportation system,ITS)与位置服务(location-based service,LBS)等方面具有重要的研究价值和应用意义。本文提出了一种道路网多特征匹配优化算法:首先从形状、距离、语义3方面分别设计了基于面积累积的形状差、综合中值Hausdorff距离和全局加权属性项距离3种相似性度量,以更准确地描述道路待匹配对之间的特征差异;然后通过SVM对相似性特征样本集训练,以构建道路网回归匹配模型;最后利用此模型对未知匹配结果道路待匹配对进行匹配结果预测。大量试验结果表明...
Gespeichert in:
Veröffentlicht in: | Ce hui xue bao 2016-05, Vol.45 (5), p.608 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 608 |
container_title | Ce hui xue bao |
container_volume | 45 |
creator | 付仲良 杨元维 高贤君 赵星源 范亮 |
description | 同名道路匹配技术是道路数据集成、更新和融合的重要前提。道路网匹配在智能交通(intelligent transportation system,ITS)与位置服务(location-based service,LBS)等方面具有重要的研究价值和应用意义。本文提出了一种道路网多特征匹配优化算法:首先从形状、距离、语义3方面分别设计了基于面积累积的形状差、综合中值Hausdorff距离和全局加权属性项距离3种相似性度量,以更准确地描述道路待匹配对之间的特征差异;然后通过SVM对相似性特征样本集训练,以构建道路网回归匹配模型;最后利用此模型对未知匹配结果道路待匹配对进行匹配结果预测。大量试验结果表明,本文算法对非线性偏差明显的道路网数据能够实现较高的匹配准确率和召回率,能有效地用于包含多重匹配关系的道路网匹配。 |
doi_str_mv | 10.11947/j.AGCS.2016.20150388 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2583989442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583989442</sourcerecordid><originalsourceid>FETCH-proquest_journals_25839894423</originalsourceid><addsrcrecordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwNAMRpgbGFhZMDJyGBgaGuoamlqYsSGwOBq7i4iwDA1MLEzNTTgaVl42TX2xf_3zvxKdLZj3v3Pl0X-PTnp0vW3uf7JnxtGfa83XTn22eysPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8UamFsaWFpYmJkbGxKkCAFo1QlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583989442</pqid></control><display><type>article</type><title>道路网多特征匹配优化算法</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>付仲良 ; 杨元维 ; 高贤君 ; 赵星源 ; 范亮</creator><creatorcontrib>付仲良 ; 杨元维 ; 高贤君 ; 赵星源 ; 范亮</creatorcontrib><description>同名道路匹配技术是道路数据集成、更新和融合的重要前提。道路网匹配在智能交通(intelligent transportation system,ITS)与位置服务(location-based service,LBS)等方面具有重要的研究价值和应用意义。本文提出了一种道路网多特征匹配优化算法:首先从形状、距离、语义3方面分别设计了基于面积累积的形状差、综合中值Hausdorff距离和全局加权属性项距离3种相似性度量,以更准确地描述道路待匹配对之间的特征差异;然后通过SVM对相似性特征样本集训练,以构建道路网回归匹配模型;最后利用此模型对未知匹配结果道路待匹配对进行匹配结果预测。大量试验结果表明,本文算法对非线性偏差明显的道路网数据能够实现较高的匹配准确率和召回率,能有效地用于包含多重匹配关系的道路网匹配。</description><identifier>ISSN: 1001-1595</identifier><identifier>EISSN: 1001-1595</identifier><identifier>DOI: 10.11947/j.AGCS.2016.20150388</identifier><language>chi ; eng</language><publisher>Beijing: Surveying and Mapping Press</publisher><subject>Algorithms ; Intelligent transportation systems ; Location based services ; Matching ; Metric space ; Optimization ; Optimization algorithms ; Regression models ; Roads ; Semantics ; Similarity ; Support vector machines ; Transportation networks</subject><ispartof>Ce hui xue bao, 2016-05, Vol.45 (5), p.608</ispartof><rights>May 2016. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>付仲良</creatorcontrib><creatorcontrib>杨元维</creatorcontrib><creatorcontrib>高贤君</creatorcontrib><creatorcontrib>赵星源</creatorcontrib><creatorcontrib>范亮</creatorcontrib><title>道路网多特征匹配优化算法</title><title>Ce hui xue bao</title><description>同名道路匹配技术是道路数据集成、更新和融合的重要前提。道路网匹配在智能交通(intelligent transportation system,ITS)与位置服务(location-based service,LBS)等方面具有重要的研究价值和应用意义。本文提出了一种道路网多特征匹配优化算法:首先从形状、距离、语义3方面分别设计了基于面积累积的形状差、综合中值Hausdorff距离和全局加权属性项距离3种相似性度量,以更准确地描述道路待匹配对之间的特征差异;然后通过SVM对相似性特征样本集训练,以构建道路网回归匹配模型;最后利用此模型对未知匹配结果道路待匹配对进行匹配结果预测。大量试验结果表明,本文算法对非线性偏差明显的道路网数据能够实现较高的匹配准确率和召回率,能有效地用于包含多重匹配关系的道路网匹配。</description><subject>Algorithms</subject><subject>Intelligent transportation systems</subject><subject>Location based services</subject><subject>Matching</subject><subject>Metric space</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Regression models</subject><subject>Roads</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Support vector machines</subject><subject>Transportation networks</subject><issn>1001-1595</issn><issn>1001-1595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwNAMRpgbGFhZMDJyGBgaGuoamlqYsSGwOBq7i4iwDA1MLEzNTTgaVl42TX2xf_3zvxKdLZj3v3Pl0X-PTnp0vW3uf7JnxtGfa83XTn22eysPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8UamFsaWFpYmJkbGxKkCAFo1QlI</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>付仲良</creator><creator>杨元维</creator><creator>高贤君</creator><creator>赵星源</creator><creator>范亮</creator><general>Surveying and Mapping Press</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20160501</creationdate><title>道路网多特征匹配优化算法</title><author>付仲良 ; 杨元维 ; 高贤君 ; 赵星源 ; 范亮</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25839894423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Intelligent transportation systems</topic><topic>Location based services</topic><topic>Matching</topic><topic>Metric space</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Regression models</topic><topic>Roads</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Support vector machines</topic><topic>Transportation networks</topic><toplevel>online_resources</toplevel><creatorcontrib>付仲良</creatorcontrib><creatorcontrib>杨元维</creatorcontrib><creatorcontrib>高贤君</creatorcontrib><creatorcontrib>赵星源</creatorcontrib><creatorcontrib>范亮</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Ce hui xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>付仲良</au><au>杨元维</au><au>高贤君</au><au>赵星源</au><au>范亮</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>道路网多特征匹配优化算法</atitle><jtitle>Ce hui xue bao</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>45</volume><issue>5</issue><spage>608</spage><pages>608-</pages><issn>1001-1595</issn><eissn>1001-1595</eissn><abstract>同名道路匹配技术是道路数据集成、更新和融合的重要前提。道路网匹配在智能交通(intelligent transportation system,ITS)与位置服务(location-based service,LBS)等方面具有重要的研究价值和应用意义。本文提出了一种道路网多特征匹配优化算法:首先从形状、距离、语义3方面分别设计了基于面积累积的形状差、综合中值Hausdorff距离和全局加权属性项距离3种相似性度量,以更准确地描述道路待匹配对之间的特征差异;然后通过SVM对相似性特征样本集训练,以构建道路网回归匹配模型;最后利用此模型对未知匹配结果道路待匹配对进行匹配结果预测。大量试验结果表明,本文算法对非线性偏差明显的道路网数据能够实现较高的匹配准确率和召回率,能有效地用于包含多重匹配关系的道路网匹配。</abstract><cop>Beijing</cop><pub>Surveying and Mapping Press</pub><doi>10.11947/j.AGCS.2016.20150388</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-1595 |
ispartof | Ce hui xue bao, 2016-05, Vol.45 (5), p.608 |
issn | 1001-1595 1001-1595 |
language | chi ; eng |
recordid | cdi_proquest_journals_2583989442 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Intelligent transportation systems Location based services Matching Metric space Optimization Optimization algorithms Regression models Roads Semantics Similarity Support vector machines Transportation networks |
title | 道路网多特征匹配优化算法 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E9%81%93%E8%B7%AF%E7%BD%91%E5%A4%9A%E7%89%B9%E5%BE%81%E5%8C%B9%E9%85%8D%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=Ce%20hui%20xue%20bao&rft.au=%E4%BB%98%E4%BB%B2%E8%89%AF&rft.date=2016-05-01&rft.volume=45&rft.issue=5&rft.spage=608&rft.pages=608-&rft.issn=1001-1595&rft.eissn=1001-1595&rft_id=info:doi/10.11947/j.AGCS.2016.20150388&rft_dat=%3Cproquest%3E2583989442%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583989442&rft_id=info:pmid/&rfr_iscdi=true |