Co-gasification of high ash Indian coal-biomass blends in a pilot-scale fluidized bed gasifier
Conventional coal-based technologies are experiencing several disadvantages due to its high ash content as well as a significant amount of greenhouse gas emission. Focus is shifting towards the utilization of renewable resources like biomass. The efficient use of coal and biomass in a clean manner h...
Gespeichert in:
Veröffentlicht in: | Biomass conversion and biorefinery 2020-12, Vol.10 (4), p.831-838 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 838 |
---|---|
container_issue | 4 |
container_start_page | 831 |
container_title | Biomass conversion and biorefinery |
container_volume | 10 |
creator | Datta, Sudipta Chauhan, Vishal Sahu, Gajanan Chavan, Prakash D. Saha, Sujan Gupta, Pavan K. Dutta, Pashupati |
description | Conventional coal-based technologies are experiencing several disadvantages due to its high ash content as well as a significant amount of greenhouse gas emission. Focus is shifting towards the utilization of renewable resources like biomass. The efficient use of coal and biomass in a clean manner has been the driving force in developing gasification technologies. In the present investigation, an effort has been made to study the gasification performance of selected coal with two types of biomass, namely rice husk and sawdust in different proportions in a pilot-scale bubbling fluidized bed gasifier. Gasification was conducted with a mixture of air and steam at a temperature between 900–950 °C and atmospheric pressure. Mainly, three blends were prepared by adding 10, 20, and 40% of biomass with the selected coal. It was found that up to 40% of biomass loading, gasifier is operated in a trouble-free manner without the formation of tar or any agglomerate by maintaining proper fluidization with smooth and controlled variation in the process parameters like temperature, airflow, and steam flow rate. Due to the synergistic influence between coal and biomass, overall carbon conversion, gas yield, and gas heat value were found to increase with increasing biomass loading. |
doi_str_mv | 10.1007/s13399-019-00567-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583988622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583988622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-3856f56fa44af44853fb0c82f64e9bd7587a22281388cbffef4d24b925ef6c443</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA62jek1lK8VEQ3OjWkGSSNmU6qcl0ob_e1BHdCfdw7-Kcc-ED4JLga4Jxc1MIY22LMKnCQjaInoAZJS1GUlF2-nsTcQ4WpWwxxpQ1TDE8A2_LhNamxBCdGWMaYApwE9cbaMoGroYumgG6ZHpkY9qZUqDt_dAVGAdo4D72aUTFmd7D0B9iFz99B23VVOnzBTgLpi9-8bPn4PX-7mX5iJ6eH1bL2yfkmJAjYkrIUMdwbgLnSrBgsVM0SO5b2zVCNYZSqghTytkQfOAd5balwgfpOGdzcDX17nN6P_gy6m065KG-1FQo1iolKa0uOrlcTqVkH_Q-x53JH5pgfUSpJ5S6otTfKPUxxKZQqeZh7fNf9T-pL7D2djA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583988622</pqid></control><display><type>article</type><title>Co-gasification of high ash Indian coal-biomass blends in a pilot-scale fluidized bed gasifier</title><source>SpringerNature Journals</source><creator>Datta, Sudipta ; Chauhan, Vishal ; Sahu, Gajanan ; Chavan, Prakash D. ; Saha, Sujan ; Gupta, Pavan K. ; Dutta, Pashupati</creator><creatorcontrib>Datta, Sudipta ; Chauhan, Vishal ; Sahu, Gajanan ; Chavan, Prakash D. ; Saha, Sujan ; Gupta, Pavan K. ; Dutta, Pashupati</creatorcontrib><description>Conventional coal-based technologies are experiencing several disadvantages due to its high ash content as well as a significant amount of greenhouse gas emission. Focus is shifting towards the utilization of renewable resources like biomass. The efficient use of coal and biomass in a clean manner has been the driving force in developing gasification technologies. In the present investigation, an effort has been made to study the gasification performance of selected coal with two types of biomass, namely rice husk and sawdust in different proportions in a pilot-scale bubbling fluidized bed gasifier. Gasification was conducted with a mixture of air and steam at a temperature between 900–950 °C and atmospheric pressure. Mainly, three blends were prepared by adding 10, 20, and 40% of biomass with the selected coal. It was found that up to 40% of biomass loading, gasifier is operated in a trouble-free manner without the formation of tar or any agglomerate by maintaining proper fluidization with smooth and controlled variation in the process parameters like temperature, airflow, and steam flow rate. Due to the synergistic influence between coal and biomass, overall carbon conversion, gas yield, and gas heat value were found to increase with increasing biomass loading.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-019-00567-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air flow ; Ashes ; Biomass ; Biotechnology ; Coal ; Energy ; Flow velocity ; Fluidized beds ; Gasification ; Greenhouse gases ; Mixtures ; Original Article ; Process parameters ; Renewable and Green Energy ; Renewable resources ; Sawdust ; Steam flow</subject><ispartof>Biomass conversion and biorefinery, 2020-12, Vol.10 (4), p.831-838</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-3856f56fa44af44853fb0c82f64e9bd7587a22281388cbffef4d24b925ef6c443</citedby><cites>FETCH-LOGICAL-c356t-3856f56fa44af44853fb0c82f64e9bd7587a22281388cbffef4d24b925ef6c443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13399-019-00567-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13399-019-00567-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Datta, Sudipta</creatorcontrib><creatorcontrib>Chauhan, Vishal</creatorcontrib><creatorcontrib>Sahu, Gajanan</creatorcontrib><creatorcontrib>Chavan, Prakash D.</creatorcontrib><creatorcontrib>Saha, Sujan</creatorcontrib><creatorcontrib>Gupta, Pavan K.</creatorcontrib><creatorcontrib>Dutta, Pashupati</creatorcontrib><title>Co-gasification of high ash Indian coal-biomass blends in a pilot-scale fluidized bed gasifier</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>Conventional coal-based technologies are experiencing several disadvantages due to its high ash content as well as a significant amount of greenhouse gas emission. Focus is shifting towards the utilization of renewable resources like biomass. The efficient use of coal and biomass in a clean manner has been the driving force in developing gasification technologies. In the present investigation, an effort has been made to study the gasification performance of selected coal with two types of biomass, namely rice husk and sawdust in different proportions in a pilot-scale bubbling fluidized bed gasifier. Gasification was conducted with a mixture of air and steam at a temperature between 900–950 °C and atmospheric pressure. Mainly, three blends were prepared by adding 10, 20, and 40% of biomass with the selected coal. It was found that up to 40% of biomass loading, gasifier is operated in a trouble-free manner without the formation of tar or any agglomerate by maintaining proper fluidization with smooth and controlled variation in the process parameters like temperature, airflow, and steam flow rate. Due to the synergistic influence between coal and biomass, overall carbon conversion, gas yield, and gas heat value were found to increase with increasing biomass loading.</description><subject>Air flow</subject><subject>Ashes</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Coal</subject><subject>Energy</subject><subject>Flow velocity</subject><subject>Fluidized beds</subject><subject>Gasification</subject><subject>Greenhouse gases</subject><subject>Mixtures</subject><subject>Original Article</subject><subject>Process parameters</subject><subject>Renewable and Green Energy</subject><subject>Renewable resources</subject><subject>Sawdust</subject><subject>Steam flow</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKuA62jek1lK8VEQ3OjWkGSSNmU6qcl0ob_e1BHdCfdw7-Kcc-ED4JLga4Jxc1MIY22LMKnCQjaInoAZJS1GUlF2-nsTcQ4WpWwxxpQ1TDE8A2_LhNamxBCdGWMaYApwE9cbaMoGroYumgG6ZHpkY9qZUqDt_dAVGAdo4D72aUTFmd7D0B9iFz99B23VVOnzBTgLpi9-8bPn4PX-7mX5iJ6eH1bL2yfkmJAjYkrIUMdwbgLnSrBgsVM0SO5b2zVCNYZSqghTytkQfOAd5balwgfpOGdzcDX17nN6P_gy6m065KG-1FQo1iolKa0uOrlcTqVkH_Q-x53JH5pgfUSpJ5S6otTfKPUxxKZQqeZh7fNf9T-pL7D2djA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Datta, Sudipta</creator><creator>Chauhan, Vishal</creator><creator>Sahu, Gajanan</creator><creator>Chavan, Prakash D.</creator><creator>Saha, Sujan</creator><creator>Gupta, Pavan K.</creator><creator>Dutta, Pashupati</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Co-gasification of high ash Indian coal-biomass blends in a pilot-scale fluidized bed gasifier</title><author>Datta, Sudipta ; Chauhan, Vishal ; Sahu, Gajanan ; Chavan, Prakash D. ; Saha, Sujan ; Gupta, Pavan K. ; Dutta, Pashupati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-3856f56fa44af44853fb0c82f64e9bd7587a22281388cbffef4d24b925ef6c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air flow</topic><topic>Ashes</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Coal</topic><topic>Energy</topic><topic>Flow velocity</topic><topic>Fluidized beds</topic><topic>Gasification</topic><topic>Greenhouse gases</topic><topic>Mixtures</topic><topic>Original Article</topic><topic>Process parameters</topic><topic>Renewable and Green Energy</topic><topic>Renewable resources</topic><topic>Sawdust</topic><topic>Steam flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Datta, Sudipta</creatorcontrib><creatorcontrib>Chauhan, Vishal</creatorcontrib><creatorcontrib>Sahu, Gajanan</creatorcontrib><creatorcontrib>Chavan, Prakash D.</creatorcontrib><creatorcontrib>Saha, Sujan</creatorcontrib><creatorcontrib>Gupta, Pavan K.</creatorcontrib><creatorcontrib>Dutta, Pashupati</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Sudipta</au><au>Chauhan, Vishal</au><au>Sahu, Gajanan</au><au>Chavan, Prakash D.</au><au>Saha, Sujan</au><au>Gupta, Pavan K.</au><au>Dutta, Pashupati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-gasification of high ash Indian coal-biomass blends in a pilot-scale fluidized bed gasifier</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>831</spage><epage>838</epage><pages>831-838</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>Conventional coal-based technologies are experiencing several disadvantages due to its high ash content as well as a significant amount of greenhouse gas emission. Focus is shifting towards the utilization of renewable resources like biomass. The efficient use of coal and biomass in a clean manner has been the driving force in developing gasification technologies. In the present investigation, an effort has been made to study the gasification performance of selected coal with two types of biomass, namely rice husk and sawdust in different proportions in a pilot-scale bubbling fluidized bed gasifier. Gasification was conducted with a mixture of air and steam at a temperature between 900–950 °C and atmospheric pressure. Mainly, three blends were prepared by adding 10, 20, and 40% of biomass with the selected coal. It was found that up to 40% of biomass loading, gasifier is operated in a trouble-free manner without the formation of tar or any agglomerate by maintaining proper fluidization with smooth and controlled variation in the process parameters like temperature, airflow, and steam flow rate. Due to the synergistic influence between coal and biomass, overall carbon conversion, gas yield, and gas heat value were found to increase with increasing biomass loading.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-019-00567-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-6815 |
ispartof | Biomass conversion and biorefinery, 2020-12, Vol.10 (4), p.831-838 |
issn | 2190-6815 2190-6823 |
language | eng |
recordid | cdi_proquest_journals_2583988622 |
source | SpringerNature Journals |
subjects | Air flow Ashes Biomass Biotechnology Coal Energy Flow velocity Fluidized beds Gasification Greenhouse gases Mixtures Original Article Process parameters Renewable and Green Energy Renewable resources Sawdust Steam flow |
title | Co-gasification of high ash Indian coal-biomass blends in a pilot-scale fluidized bed gasifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-gasification%20of%20high%20ash%20Indian%20coal-biomass%20blends%20in%20a%20pilot-scale%20fluidized%20bed%20gasifier&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Datta,%20Sudipta&rft.date=2020-12-01&rft.volume=10&rft.issue=4&rft.spage=831&rft.epage=838&rft.pages=831-838&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-019-00567-2&rft_dat=%3Cproquest_cross%3E2583988622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583988622&rft_id=info:pmid/&rfr_iscdi=true |