Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values
The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–neares...
Gespeichert in:
Veröffentlicht in: | Journal of Artificial Intelligence and Soft Computing Research 2021-10, Vol.11 (4), p.307-318 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 4 |
container_start_page | 307 |
container_title | Journal of Artificial Intelligence and Soft Computing Research |
container_volume | 11 |
creator | Nowicki, Robert K. Seliga, Robert Żelasko, Dariusz Hayashi, Yoichi |
description | The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine. |
doi_str_mv | 10.2478/jaiscr-2021-0018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583824350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583824350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EElXpzmiJOXBxnDQeSwUUqQhEgdU6O3brKk2KnQ7ZeAfekCfBURmY7nT67j_dR8hlCteMT8ubLbqgfcKApQlAWp6QEeNcJAUX4vRff04mIWwBgImcAytGxLwYb1u_w0YbOmuw7oMLtLX0tT2sN3Rlup-v71sMpqKLXnlX0XmNITjrNHaubeiqD53ZBeoa2m0MnUd0WH9yEWrW9APrgwkX5MxiHczkr47J-_3d23yRLJ8fHuezZaJZmU2TrFDTqtIo0lyjyuMIlUJEsCxXha4KbgCswCyDXKXCqrJQquQ8NZXQGMdjcnXM3fv2M97t5LY9-PhVkCzGlYxnOUQKjpT2bQjeWLn3boe-lynIwac8-pSDTzn4zH4BaH1r2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583824350</pqid></control><display><type>article</type><title>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</title><source>Walter De Gruyter: Open Access Journals</source><creator>Nowicki, Robert K. ; Seliga, Robert ; Żelasko, Dariusz ; Hayashi, Yoichi</creator><creatorcontrib>Nowicki, Robert K. ; Seliga, Robert ; Żelasko, Dariusz ; Hayashi, Yoichi</creatorcontrib><description>The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.</description><identifier>ISSN: 2449-6499</identifier><identifier>EISSN: 2449-6499</identifier><identifier>DOI: 10.2478/jaiscr-2021-0018</identifier><language>eng</language><publisher>Warsaw: De Gruyter Poland</publisher><subject>Classification ; Fuzzy logic ; Fuzzy set theory ; Fuzzy systems ; Hybrid systems ; Machine learning ; Neural networks ; Real numbers ; Support vector machines</subject><ispartof>Journal of Artificial Intelligence and Soft Computing Research, 2021-10, Vol.11 (4), p.307-318</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</citedby><cites>FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nowicki, Robert K.</creatorcontrib><creatorcontrib>Seliga, Robert</creatorcontrib><creatorcontrib>Żelasko, Dariusz</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><title>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</title><title>Journal of Artificial Intelligence and Soft Computing Research</title><description>The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.</description><subject>Classification</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Hybrid systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Real numbers</subject><subject>Support vector machines</subject><issn>2449-6499</issn><issn>2449-6499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkLFOwzAQhi0EElXpzmiJOXBxnDQeSwUUqQhEgdU6O3brKk2KnQ7ZeAfekCfBURmY7nT67j_dR8hlCteMT8ubLbqgfcKApQlAWp6QEeNcJAUX4vRff04mIWwBgImcAytGxLwYb1u_w0YbOmuw7oMLtLX0tT2sN3Rlup-v71sMpqKLXnlX0XmNITjrNHaubeiqD53ZBeoa2m0MnUd0WH9yEWrW9APrgwkX5MxiHczkr47J-_3d23yRLJ8fHuezZaJZmU2TrFDTqtIo0lyjyuMIlUJEsCxXha4KbgCswCyDXKXCqrJQquQ8NZXQGMdjcnXM3fv2M97t5LY9-PhVkCzGlYxnOUQKjpT2bQjeWLn3boe-lynIwac8-pSDTzn4zH4BaH1r2Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Nowicki, Robert K.</creator><creator>Seliga, Robert</creator><creator>Żelasko, Dariusz</creator><creator>Hayashi, Yoichi</creator><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211001</creationdate><title>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</title><author>Nowicki, Robert K. ; Seliga, Robert ; Żelasko, Dariusz ; Hayashi, Yoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Hybrid systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Real numbers</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowicki, Robert K.</creatorcontrib><creatorcontrib>Seliga, Robert</creatorcontrib><creatorcontrib>Żelasko, Dariusz</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowicki, Robert K.</au><au>Seliga, Robert</au><au>Żelasko, Dariusz</au><au>Hayashi, Yoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</atitle><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>2449-6499</issn><eissn>2449-6499</eissn><abstract>The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.</abstract><cop>Warsaw</cop><pub>De Gruyter Poland</pub><doi>10.2478/jaiscr-2021-0018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2449-6499 |
ispartof | Journal of Artificial Intelligence and Soft Computing Research, 2021-10, Vol.11 (4), p.307-318 |
issn | 2449-6499 2449-6499 |
language | eng |
recordid | cdi_proquest_journals_2583824350 |
source | Walter De Gruyter: Open Access Journals |
subjects | Classification Fuzzy logic Fuzzy set theory Fuzzy systems Hybrid systems Machine learning Neural networks Real numbers Support vector machines |
title | Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20Rough%20Set%E2%80%93Based%20Hybrid%20Classification%20Systems%20in%20the%20Case%20of%20Missing%20Values&rft.jtitle=Journal%20of%20Artificial%20Intelligence%20and%20Soft%20Computing%20Research&rft.au=Nowicki,%20Robert%20K.&rft.date=2021-10-01&rft.volume=11&rft.issue=4&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=2449-6499&rft.eissn=2449-6499&rft_id=info:doi/10.2478/jaiscr-2021-0018&rft_dat=%3Cproquest_cross%3E2583824350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583824350&rft_id=info:pmid/&rfr_iscdi=true |