Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values

The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–neares...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Artificial Intelligence and Soft Computing Research 2021-10, Vol.11 (4), p.307-318
Hauptverfasser: Nowicki, Robert K., Seliga, Robert, Żelasko, Dariusz, Hayashi, Yoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 4
container_start_page 307
container_title Journal of Artificial Intelligence and Soft Computing Research
container_volume 11
creator Nowicki, Robert K.
Seliga, Robert
Żelasko, Dariusz
Hayashi, Yoichi
description The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
doi_str_mv 10.2478/jaiscr-2021-0018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583824350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583824350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EElXpzmiJOXBxnDQeSwUUqQhEgdU6O3brKk2KnQ7ZeAfekCfBURmY7nT67j_dR8hlCteMT8ubLbqgfcKApQlAWp6QEeNcJAUX4vRff04mIWwBgImcAytGxLwYb1u_w0YbOmuw7oMLtLX0tT2sN3Rlup-v71sMpqKLXnlX0XmNITjrNHaubeiqD53ZBeoa2m0MnUd0WH9yEWrW9APrgwkX5MxiHczkr47J-_3d23yRLJ8fHuezZaJZmU2TrFDTqtIo0lyjyuMIlUJEsCxXha4KbgCswCyDXKXCqrJQquQ8NZXQGMdjcnXM3fv2M97t5LY9-PhVkCzGlYxnOUQKjpT2bQjeWLn3boe-lynIwac8-pSDTzn4zH4BaH1r2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583824350</pqid></control><display><type>article</type><title>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</title><source>Walter De Gruyter: Open Access Journals</source><creator>Nowicki, Robert K. ; Seliga, Robert ; Żelasko, Dariusz ; Hayashi, Yoichi</creator><creatorcontrib>Nowicki, Robert K. ; Seliga, Robert ; Żelasko, Dariusz ; Hayashi, Yoichi</creatorcontrib><description>The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.</description><identifier>ISSN: 2449-6499</identifier><identifier>EISSN: 2449-6499</identifier><identifier>DOI: 10.2478/jaiscr-2021-0018</identifier><language>eng</language><publisher>Warsaw: De Gruyter Poland</publisher><subject>Classification ; Fuzzy logic ; Fuzzy set theory ; Fuzzy systems ; Hybrid systems ; Machine learning ; Neural networks ; Real numbers ; Support vector machines</subject><ispartof>Journal of Artificial Intelligence and Soft Computing Research, 2021-10, Vol.11 (4), p.307-318</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</citedby><cites>FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nowicki, Robert K.</creatorcontrib><creatorcontrib>Seliga, Robert</creatorcontrib><creatorcontrib>Żelasko, Dariusz</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><title>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</title><title>Journal of Artificial Intelligence and Soft Computing Research</title><description>The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.</description><subject>Classification</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Hybrid systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Real numbers</subject><subject>Support vector machines</subject><issn>2449-6499</issn><issn>2449-6499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkLFOwzAQhi0EElXpzmiJOXBxnDQeSwUUqQhEgdU6O3brKk2KnQ7ZeAfekCfBURmY7nT67j_dR8hlCteMT8ubLbqgfcKApQlAWp6QEeNcJAUX4vRff04mIWwBgImcAytGxLwYb1u_w0YbOmuw7oMLtLX0tT2sN3Rlup-v71sMpqKLXnlX0XmNITjrNHaubeiqD53ZBeoa2m0MnUd0WH9yEWrW9APrgwkX5MxiHczkr47J-_3d23yRLJ8fHuezZaJZmU2TrFDTqtIo0lyjyuMIlUJEsCxXha4KbgCswCyDXKXCqrJQquQ8NZXQGMdjcnXM3fv2M97t5LY9-PhVkCzGlYxnOUQKjpT2bQjeWLn3boe-lynIwac8-pSDTzn4zH4BaH1r2Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Nowicki, Robert K.</creator><creator>Seliga, Robert</creator><creator>Żelasko, Dariusz</creator><creator>Hayashi, Yoichi</creator><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211001</creationdate><title>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</title><author>Nowicki, Robert K. ; Seliga, Robert ; Żelasko, Dariusz ; Hayashi, Yoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2837-36b7ddca915cab5837abbaaa0f25b6cd64e00f9a3305b19fb86bb8441ed9caa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Hybrid systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Real numbers</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowicki, Robert K.</creatorcontrib><creatorcontrib>Seliga, Robert</creatorcontrib><creatorcontrib>Żelasko, Dariusz</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowicki, Robert K.</au><au>Seliga, Robert</au><au>Żelasko, Dariusz</au><au>Hayashi, Yoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values</atitle><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>2449-6499</issn><eissn>2449-6499</eissn><abstract>The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.</abstract><cop>Warsaw</cop><pub>De Gruyter Poland</pub><doi>10.2478/jaiscr-2021-0018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2449-6499
ispartof Journal of Artificial Intelligence and Soft Computing Research, 2021-10, Vol.11 (4), p.307-318
issn 2449-6499
2449-6499
language eng
recordid cdi_proquest_journals_2583824350
source Walter De Gruyter: Open Access Journals
subjects Classification
Fuzzy logic
Fuzzy set theory
Fuzzy systems
Hybrid systems
Machine learning
Neural networks
Real numbers
Support vector machines
title Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20Rough%20Set%E2%80%93Based%20Hybrid%20Classification%20Systems%20in%20the%20Case%20of%20Missing%20Values&rft.jtitle=Journal%20of%20Artificial%20Intelligence%20and%20Soft%20Computing%20Research&rft.au=Nowicki,%20Robert%20K.&rft.date=2021-10-01&rft.volume=11&rft.issue=4&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=2449-6499&rft.eissn=2449-6499&rft_id=info:doi/10.2478/jaiscr-2021-0018&rft_dat=%3Cproquest_cross%3E2583824350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583824350&rft_id=info:pmid/&rfr_iscdi=true