Approximate Solutions, Thermal Properties and Superstatistics Solutions to Schrödinger Equation

In this work, we apply the parametric Nikiforov-Uvarov method to obtain eigen solutions and total normalized wave function of Schr\"odinger equation express in terms of Jacobi polynomial using Coulomb plus Screened Exponential Hyperbolic potential (CPSEHP), where we obtained the probability den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-10
Hauptverfasser: Okon, Ituen B, Onate, Clement O, Omugbe, Ekwevugbe, Okorie, Uduakobong S, Antia, Akaninyene D, Onyeaju, Michael C, Wen-Li, Chen, Araujo, Judith P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Okon, Ituen B
Onate, Clement O
Omugbe, Ekwevugbe
Okorie, Uduakobong S
Antia, Akaninyene D
Onyeaju, Michael C
Wen-Li, Chen
Araujo, Judith P
description In this work, we apply the parametric Nikiforov-Uvarov method to obtain eigen solutions and total normalized wave function of Schr\"odinger equation express in terms of Jacobi polynomial using Coulomb plus Screened Exponential Hyperbolic potential (CPSEHP), where we obtained the probability density plots for the proposed potential for various orbital angular quantum number, as well as some special cases (Hellmann and Yukawa potential).The proposed potential is best suitable for smaller values of the screening parameter .The resulting energy eigen equation is presented in a close form and extended to study thermal properties and superstatistics express in terms of partition function (Z) and other thermodynamic properties such as; vibrational mean energy (U) , vibrational specific heat capacity (C) ,vibrational entropy(S) and vibrational free energy(F) . Using the resulting energy equation and with the help of Matlab software, the numerical bound state solutions were obtained for various values of the screening parameter ( alpha) as well as different expectation values via Hellmann-Feynman Theorem (HFT). The trend of the partition function and other thermodynamic properties obtained for both thermal properties and superstatistics were in excellent agreement with the existing literatures. Due to the analytical mathematical complexities, the superstatistics and thermal properties were evaluated using Mathematica 10.0 version software. The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential and Coulomb potential as special cases.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2583711471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583711471</sourcerecordid><originalsourceid>FETCH-proquest_journals_25837114713</originalsourceid><addsrcrecordid>eNqNjdEKgjAYhUcQJOU7_NBtgm6a3kYYXQZ6b0NXTnTT_Rv0ZL1AL5ZB0G1Xh8P3Hc6CeJSxKMhiSlfER-zCMKT7lCYJ88j1MI5GP-TArYBC985KrXAHZSvMwHu4GD0KY6VA4KqBws0NLbcSrazxtwCroahb83o2Ut2FgXxy_EM2ZHnjPQr_m2uyPeXl8RzMt5MTaKtOO6NmVNEkY2kUxWnE_rPe7SJG2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583711471</pqid></control><display><type>article</type><title>Approximate Solutions, Thermal Properties and Superstatistics Solutions to Schrödinger Equation</title><source>Free E- Journals</source><creator>Okon, Ituen B ; Onate, Clement O ; Omugbe, Ekwevugbe ; Okorie, Uduakobong S ; Antia, Akaninyene D ; Onyeaju, Michael C ; Wen-Li, Chen ; Araujo, Judith P</creator><creatorcontrib>Okon, Ituen B ; Onate, Clement O ; Omugbe, Ekwevugbe ; Okorie, Uduakobong S ; Antia, Akaninyene D ; Onyeaju, Michael C ; Wen-Li, Chen ; Araujo, Judith P</creatorcontrib><description>In this work, we apply the parametric Nikiforov-Uvarov method to obtain eigen solutions and total normalized wave function of Schr\"odinger equation express in terms of Jacobi polynomial using Coulomb plus Screened Exponential Hyperbolic potential (CPSEHP), where we obtained the probability density plots for the proposed potential for various orbital angular quantum number, as well as some special cases (Hellmann and Yukawa potential).The proposed potential is best suitable for smaller values of the screening parameter .The resulting energy eigen equation is presented in a close form and extended to study thermal properties and superstatistics express in terms of partition function (Z) and other thermodynamic properties such as; vibrational mean energy (U) , vibrational specific heat capacity (C) ,vibrational entropy(S) and vibrational free energy(F) . Using the resulting energy equation and with the help of Matlab software, the numerical bound state solutions were obtained for various values of the screening parameter ( alpha) as well as different expectation values via Hellmann-Feynman Theorem (HFT). The trend of the partition function and other thermodynamic properties obtained for both thermal properties and superstatistics were in excellent agreement with the existing literatures. Due to the analytical mathematical complexities, the superstatistics and thermal properties were evaluated using Mathematica 10.0 version software. The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential and Coulomb potential as special cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coulomb potential ; Free energy ; Hellmann-Feynman theorem ; Parameters ; Partitions (mathematics) ; Polynomials ; Schrodinger equation ; Screening ; Software ; Thermodynamic properties ; Wave functions ; Yukawa potential</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Okon, Ituen B</creatorcontrib><creatorcontrib>Onate, Clement O</creatorcontrib><creatorcontrib>Omugbe, Ekwevugbe</creatorcontrib><creatorcontrib>Okorie, Uduakobong S</creatorcontrib><creatorcontrib>Antia, Akaninyene D</creatorcontrib><creatorcontrib>Onyeaju, Michael C</creatorcontrib><creatorcontrib>Wen-Li, Chen</creatorcontrib><creatorcontrib>Araujo, Judith P</creatorcontrib><title>Approximate Solutions, Thermal Properties and Superstatistics Solutions to Schrödinger Equation</title><title>arXiv.org</title><description>In this work, we apply the parametric Nikiforov-Uvarov method to obtain eigen solutions and total normalized wave function of Schr\"odinger equation express in terms of Jacobi polynomial using Coulomb plus Screened Exponential Hyperbolic potential (CPSEHP), where we obtained the probability density plots for the proposed potential for various orbital angular quantum number, as well as some special cases (Hellmann and Yukawa potential).The proposed potential is best suitable for smaller values of the screening parameter .The resulting energy eigen equation is presented in a close form and extended to study thermal properties and superstatistics express in terms of partition function (Z) and other thermodynamic properties such as; vibrational mean energy (U) , vibrational specific heat capacity (C) ,vibrational entropy(S) and vibrational free energy(F) . Using the resulting energy equation and with the help of Matlab software, the numerical bound state solutions were obtained for various values of the screening parameter ( alpha) as well as different expectation values via Hellmann-Feynman Theorem (HFT). The trend of the partition function and other thermodynamic properties obtained for both thermal properties and superstatistics were in excellent agreement with the existing literatures. Due to the analytical mathematical complexities, the superstatistics and thermal properties were evaluated using Mathematica 10.0 version software. The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential and Coulomb potential as special cases.</description><subject>Coulomb potential</subject><subject>Free energy</subject><subject>Hellmann-Feynman theorem</subject><subject>Parameters</subject><subject>Partitions (mathematics)</subject><subject>Polynomials</subject><subject>Schrodinger equation</subject><subject>Screening</subject><subject>Software</subject><subject>Thermodynamic properties</subject><subject>Wave functions</subject><subject>Yukawa potential</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjdEKgjAYhUcQJOU7_NBtgm6a3kYYXQZ6b0NXTnTT_Rv0ZL1AL5ZB0G1Xh8P3Hc6CeJSxKMhiSlfER-zCMKT7lCYJ88j1MI5GP-TArYBC985KrXAHZSvMwHu4GD0KY6VA4KqBws0NLbcSrazxtwCroahb83o2Ut2FgXxy_EM2ZHnjPQr_m2uyPeXl8RzMt5MTaKtOO6NmVNEkY2kUxWnE_rPe7SJG2w</recordid><startdate>20211016</startdate><enddate>20211016</enddate><creator>Okon, Ituen B</creator><creator>Onate, Clement O</creator><creator>Omugbe, Ekwevugbe</creator><creator>Okorie, Uduakobong S</creator><creator>Antia, Akaninyene D</creator><creator>Onyeaju, Michael C</creator><creator>Wen-Li, Chen</creator><creator>Araujo, Judith P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211016</creationdate><title>Approximate Solutions, Thermal Properties and Superstatistics Solutions to Schrödinger Equation</title><author>Okon, Ituen B ; Onate, Clement O ; Omugbe, Ekwevugbe ; Okorie, Uduakobong S ; Antia, Akaninyene D ; Onyeaju, Michael C ; Wen-Li, Chen ; Araujo, Judith P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25837114713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coulomb potential</topic><topic>Free energy</topic><topic>Hellmann-Feynman theorem</topic><topic>Parameters</topic><topic>Partitions (mathematics)</topic><topic>Polynomials</topic><topic>Schrodinger equation</topic><topic>Screening</topic><topic>Software</topic><topic>Thermodynamic properties</topic><topic>Wave functions</topic><topic>Yukawa potential</topic><toplevel>online_resources</toplevel><creatorcontrib>Okon, Ituen B</creatorcontrib><creatorcontrib>Onate, Clement O</creatorcontrib><creatorcontrib>Omugbe, Ekwevugbe</creatorcontrib><creatorcontrib>Okorie, Uduakobong S</creatorcontrib><creatorcontrib>Antia, Akaninyene D</creatorcontrib><creatorcontrib>Onyeaju, Michael C</creatorcontrib><creatorcontrib>Wen-Li, Chen</creatorcontrib><creatorcontrib>Araujo, Judith P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okon, Ituen B</au><au>Onate, Clement O</au><au>Omugbe, Ekwevugbe</au><au>Okorie, Uduakobong S</au><au>Antia, Akaninyene D</au><au>Onyeaju, Michael C</au><au>Wen-Li, Chen</au><au>Araujo, Judith P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Approximate Solutions, Thermal Properties and Superstatistics Solutions to Schrödinger Equation</atitle><jtitle>arXiv.org</jtitle><date>2021-10-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this work, we apply the parametric Nikiforov-Uvarov method to obtain eigen solutions and total normalized wave function of Schr\"odinger equation express in terms of Jacobi polynomial using Coulomb plus Screened Exponential Hyperbolic potential (CPSEHP), where we obtained the probability density plots for the proposed potential for various orbital angular quantum number, as well as some special cases (Hellmann and Yukawa potential).The proposed potential is best suitable for smaller values of the screening parameter .The resulting energy eigen equation is presented in a close form and extended to study thermal properties and superstatistics express in terms of partition function (Z) and other thermodynamic properties such as; vibrational mean energy (U) , vibrational specific heat capacity (C) ,vibrational entropy(S) and vibrational free energy(F) . Using the resulting energy equation and with the help of Matlab software, the numerical bound state solutions were obtained for various values of the screening parameter ( alpha) as well as different expectation values via Hellmann-Feynman Theorem (HFT). The trend of the partition function and other thermodynamic properties obtained for both thermal properties and superstatistics were in excellent agreement with the existing literatures. Due to the analytical mathematical complexities, the superstatistics and thermal properties were evaluated using Mathematica 10.0 version software. The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential and Coulomb potential as special cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2583711471
source Free E- Journals
subjects Coulomb potential
Free energy
Hellmann-Feynman theorem
Parameters
Partitions (mathematics)
Polynomials
Schrodinger equation
Screening
Software
Thermodynamic properties
Wave functions
Yukawa potential
title Approximate Solutions, Thermal Properties and Superstatistics Solutions to Schrödinger Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Approximate%20Solutions,%20Thermal%20Properties%20and%20Superstatistics%20Solutions%20to%20Schr%C3%B6dinger%20Equation&rft.jtitle=arXiv.org&rft.au=Okon,%20Ituen%20B&rft.date=2021-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2583711471%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583711471&rft_id=info:pmid/&rfr_iscdi=true