Hydromechanical Investigations on the Self-propping Potential of Fractures in Tight Sandstones
The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures,...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2021-10, Vol.54 (10), p.5407-5432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5432 |
---|---|
container_issue | 10 |
container_start_page | 5407 |
container_title | Rock mechanics and rock engineering |
container_volume | 54 |
creator | Cheng, Chaojie Milsch, Harald |
description | The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3–25%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met. |
doi_str_mv | 10.1007/s00603-021-02500-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583693715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583693715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bfd5ebc491704f12af1a9975144183854133ca338f2eb705da2cae5e65e2baea3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wFXA9Wie81hKsbZQUGgFV4ZMJpmmtMmYpEL_vdER3Lm43MX9zrn3HgBuMLrDCFX3EaES0QIRnIsjVLATMMGMsoJx-nYKJqgitCAlJefgIsYtQnlY1RPwPj92we-12khnldzBhfvUMdleJutdhN7BtNFwpXemGIIfBut6-OKTdslm2hs4C1KlQ9ARWgfXtt8kuJKui8k7Ha_AmZG7qK9_-yV4nT2up_Ni-fy0mD4sC0VLmorWdFy3ijW4QsxgIg2WTVNxzBiuac0ZplRJSmtDdFsh3kmipOa65Jq0Ukt6CW5H33zjxyE_ILb-EFxeKQivadnQCvNMkZFSwccYtBFDsHsZjgIj8Z2jGHMUOUfxk6NgWURHUcyw63X4s_5H9QVUhHbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583693715</pqid></control><display><type>article</type><title>Hydromechanical Investigations on the Self-propping Potential of Fractures in Tight Sandstones</title><source>SpringerLink Journals</source><creator>Cheng, Chaojie ; Milsch, Harald</creator><creatorcontrib>Cheng, Chaojie ; Milsch, Harald</creatorcontrib><description>The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3–25%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02500-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Anisotropy ; Apertures ; Asperity ; Civil Engineering ; Confining ; Contact pressure ; Contact stresses ; Displacement ; Earth and Environmental Science ; Earth Sciences ; Fluid dynamics ; Fluid flow ; Fracture surfaces ; Geophysics/Geodesy ; Hydrology ; Mechanical properties ; Original Paper ; Rapid prototyping ; Sandstone ; Sedimentary rocks ; Surface roughness ; Wavelength ; X ray microtomography</subject><ispartof>Rock mechanics and rock engineering, 2021-10, Vol.54 (10), p.5407-5432</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bfd5ebc491704f12af1a9975144183854133ca338f2eb705da2cae5e65e2baea3</citedby><cites>FETCH-LOGICAL-c363t-bfd5ebc491704f12af1a9975144183854133ca338f2eb705da2cae5e65e2baea3</cites><orcidid>0000-0002-5915-5862 ; 0000-0002-8751-5546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02500-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02500-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Chaojie</creatorcontrib><creatorcontrib>Milsch, Harald</creatorcontrib><title>Hydromechanical Investigations on the Self-propping Potential of Fractures in Tight Sandstones</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3–25%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met.</description><subject>Anisotropy</subject><subject>Apertures</subject><subject>Asperity</subject><subject>Civil Engineering</subject><subject>Confining</subject><subject>Contact pressure</subject><subject>Contact stresses</subject><subject>Displacement</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fracture surfaces</subject><subject>Geophysics/Geodesy</subject><subject>Hydrology</subject><subject>Mechanical properties</subject><subject>Original Paper</subject><subject>Rapid prototyping</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Surface roughness</subject><subject>Wavelength</subject><subject>X ray microtomography</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWB9_wFXA9Wie81hKsbZQUGgFV4ZMJpmmtMmYpEL_vdER3Lm43MX9zrn3HgBuMLrDCFX3EaES0QIRnIsjVLATMMGMsoJx-nYKJqgitCAlJefgIsYtQnlY1RPwPj92we-12khnldzBhfvUMdleJutdhN7BtNFwpXemGIIfBut6-OKTdslm2hs4C1KlQ9ARWgfXtt8kuJKui8k7Ha_AmZG7qK9_-yV4nT2up_Ni-fy0mD4sC0VLmorWdFy3ijW4QsxgIg2WTVNxzBiuac0ZplRJSmtDdFsh3kmipOa65Jq0Ukt6CW5H33zjxyE_ILb-EFxeKQivadnQCvNMkZFSwccYtBFDsHsZjgIj8Z2jGHMUOUfxk6NgWURHUcyw63X4s_5H9QVUhHbA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Cheng, Chaojie</creator><creator>Milsch, Harald</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5915-5862</orcidid><orcidid>https://orcid.org/0000-0002-8751-5546</orcidid></search><sort><creationdate>20211001</creationdate><title>Hydromechanical Investigations on the Self-propping Potential of Fractures in Tight Sandstones</title><author>Cheng, Chaojie ; Milsch, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bfd5ebc491704f12af1a9975144183854133ca338f2eb705da2cae5e65e2baea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Apertures</topic><topic>Asperity</topic><topic>Civil Engineering</topic><topic>Confining</topic><topic>Contact pressure</topic><topic>Contact stresses</topic><topic>Displacement</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fracture surfaces</topic><topic>Geophysics/Geodesy</topic><topic>Hydrology</topic><topic>Mechanical properties</topic><topic>Original Paper</topic><topic>Rapid prototyping</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Surface roughness</topic><topic>Wavelength</topic><topic>X ray microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chaojie</creatorcontrib><creatorcontrib>Milsch, Harald</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chaojie</au><au>Milsch, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydromechanical Investigations on the Self-propping Potential of Fractures in Tight Sandstones</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>54</volume><issue>10</issue><spage>5407</spage><epage>5432</epage><pages>5407-5432</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3–25%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02500-4</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5915-5862</orcidid><orcidid>https://orcid.org/0000-0002-8751-5546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2021-10, Vol.54 (10), p.5407-5432 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_journals_2583693715 |
source | SpringerLink Journals |
subjects | Anisotropy Apertures Asperity Civil Engineering Confining Contact pressure Contact stresses Displacement Earth and Environmental Science Earth Sciences Fluid dynamics Fluid flow Fracture surfaces Geophysics/Geodesy Hydrology Mechanical properties Original Paper Rapid prototyping Sandstone Sedimentary rocks Surface roughness Wavelength X ray microtomography |
title | Hydromechanical Investigations on the Self-propping Potential of Fractures in Tight Sandstones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydromechanical%20Investigations%20on%20the%20Self-propping%20Potential%20of%20Fractures%20in%20Tight%20Sandstones&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Cheng,%20Chaojie&rft.date=2021-10-01&rft.volume=54&rft.issue=10&rft.spage=5407&rft.epage=5432&rft.pages=5407-5432&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02500-4&rft_dat=%3Cproquest_cross%3E2583693715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583693715&rft_id=info:pmid/&rfr_iscdi=true |