Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes

The dynamic nature and increasing complexity of the construction industry have led to increased conflicts in construction projects. An accurate prediction of the outcome of a dispute resolution in courts could effectively reduce the number of disputes that would otherwise conclude by spending more m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence and law 2021-12, Vol.29 (4), p.453-484
Hauptverfasser: Bagherian-Marandi, Navid, Ravanshadnia, Mehdi, Akbarzadeh-T, Mohammad-R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 4
container_start_page 453
container_title Artificial intelligence and law
container_volume 29
creator Bagherian-Marandi, Navid
Ravanshadnia, Mehdi
Akbarzadeh-T, Mohammad-R.
description The dynamic nature and increasing complexity of the construction industry have led to increased conflicts in construction projects. An accurate prediction of the outcome of a dispute resolution in courts could effectively reduce the number of disputes that would otherwise conclude by spending more money through litigation. This study aims to introduce a two-layered fuzzy logic model for predicting court decisions in construction contract disputes. 100 cases of construction contract disputes are selected from the courts of Iran. A questionnaire survey is then conducted to extract a set of fuzzy rules for identifying important decision parameters and expert knowledge. Accordingly, a two-layered fuzzy logic-based decision-making architecture is proposed for the prediction model. Furthermore, the fuzzy system is trained based on 10-fold cross-validation. Analysis of results indicates that 51 out of the 100 cases are filed after the dissolution and termination of the contract show a significant impact of these clauses as the root cause in construction contract disputes. Our results present a proposed hierarchical fuzzy system that can correctly predict nearly 60% of the test data. Also, we demonstrate a methodology of using argument before ML to establish interpretable AI models. Based on our findings, a fuzzy model with a hierarchical structure may be used as a simple and efficient method for predicting court decisions in construction contract disputes.
doi_str_mv 10.1007/s10506-021-09281-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2583690344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712224062</galeid><sourcerecordid>A712224062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-bc8ddf235a41802bc25b16182a1a542528164c11a49833c438de22b67e8dcb5e3</originalsourceid><addsrcrecordid>eNp9kc1qAyEUhaW00DTtC3Q10LWpXh3jLEPoHwS6SdfiqBMMkzHVGUry9DVJIRRKcSEev6PnchC6p2RCCZk-JkpKIjABikkFkuLqAo1oOQUsmYRLNMoqx5ILdo1uUloTQipRsRGyy6-AW71z0dmiGfb7XdGGlTe41ikrm2BdWzQhFtsMeNP7blWYMMS-sM745EOXCt9lqUt9HPJ9OB76qE1GfNoOvUu36KrRbXJ3P_sYfTw_LeevePH-8jafLbBhUvS4NtLaBlipOZUEagNlTQWVoKkuOZR5LsENpZpXkjHDmbQOoBZTJ62pS8fG6OH07jaGz8GlXq1z1C5_qaCUTFSEcX6mVrp1yndNOKTd-GTUbEoBgBMBmZr8QeVl3cbnCV3js_7LACeDiSGl6Bq1jX6j405Rog4lqVNJKpekjiWpKpvYyZQy3K1cPCf-x_UNRyCULQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583690344</pqid></control><display><type>article</type><title>Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes</title><source>HeinOnline Law Journal Library</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bagherian-Marandi, Navid ; Ravanshadnia, Mehdi ; Akbarzadeh-T, Mohammad-R.</creator><creatorcontrib>Bagherian-Marandi, Navid ; Ravanshadnia, Mehdi ; Akbarzadeh-T, Mohammad-R.</creatorcontrib><description>The dynamic nature and increasing complexity of the construction industry have led to increased conflicts in construction projects. An accurate prediction of the outcome of a dispute resolution in courts could effectively reduce the number of disputes that would otherwise conclude by spending more money through litigation. This study aims to introduce a two-layered fuzzy logic model for predicting court decisions in construction contract disputes. 100 cases of construction contract disputes are selected from the courts of Iran. A questionnaire survey is then conducted to extract a set of fuzzy rules for identifying important decision parameters and expert knowledge. Accordingly, a two-layered fuzzy logic-based decision-making architecture is proposed for the prediction model. Furthermore, the fuzzy system is trained based on 10-fold cross-validation. Analysis of results indicates that 51 out of the 100 cases are filed after the dissolution and termination of the contract show a significant impact of these clauses as the root cause in construction contract disputes. Our results present a proposed hierarchical fuzzy system that can correctly predict nearly 60% of the test data. Also, we demonstrate a methodology of using argument before ML to establish interpretable AI models. Based on our findings, a fuzzy model with a hierarchical structure may be used as a simple and efficient method for predicting court decisions in construction contract disputes.</description><identifier>ISSN: 0924-8463</identifier><identifier>EISSN: 1572-8382</identifier><identifier>DOI: 10.1007/s10506-021-09281-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Building ; Computer Science ; Construction contracts ; Construction industry ; Contracts ; Court decisions ; Decision making ; Fuzzy algorithms ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Information Storage and Retrieval ; Intellectual Property ; IT Law ; Judgments ; Legal Aspects of Computing ; Litigation ; Media Law ; Mediation ; Original Research ; Parameter identification ; Philosophy of Law ; Prediction models ; Structural hierarchy</subject><ispartof>Artificial intelligence and law, 2021-12, Vol.29 (4), p.453-484</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-bc8ddf235a41802bc25b16182a1a542528164c11a49833c438de22b67e8dcb5e3</citedby><cites>FETCH-LOGICAL-c386t-bc8ddf235a41802bc25b16182a1a542528164c11a49833c438de22b67e8dcb5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10506-021-09281-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10506-021-09281-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bagherian-Marandi, Navid</creatorcontrib><creatorcontrib>Ravanshadnia, Mehdi</creatorcontrib><creatorcontrib>Akbarzadeh-T, Mohammad-R.</creatorcontrib><title>Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes</title><title>Artificial intelligence and law</title><addtitle>Artif Intell Law</addtitle><description>The dynamic nature and increasing complexity of the construction industry have led to increased conflicts in construction projects. An accurate prediction of the outcome of a dispute resolution in courts could effectively reduce the number of disputes that would otherwise conclude by spending more money through litigation. This study aims to introduce a two-layered fuzzy logic model for predicting court decisions in construction contract disputes. 100 cases of construction contract disputes are selected from the courts of Iran. A questionnaire survey is then conducted to extract a set of fuzzy rules for identifying important decision parameters and expert knowledge. Accordingly, a two-layered fuzzy logic-based decision-making architecture is proposed for the prediction model. Furthermore, the fuzzy system is trained based on 10-fold cross-validation. Analysis of results indicates that 51 out of the 100 cases are filed after the dissolution and termination of the contract show a significant impact of these clauses as the root cause in construction contract disputes. Our results present a proposed hierarchical fuzzy system that can correctly predict nearly 60% of the test data. Also, we demonstrate a methodology of using argument before ML to establish interpretable AI models. Based on our findings, a fuzzy model with a hierarchical structure may be used as a simple and efficient method for predicting court decisions in construction contract disputes.</description><subject>Artificial Intelligence</subject><subject>Building</subject><subject>Computer Science</subject><subject>Construction contracts</subject><subject>Construction industry</subject><subject>Contracts</subject><subject>Court decisions</subject><subject>Decision making</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Information Storage and Retrieval</subject><subject>Intellectual Property</subject><subject>IT Law</subject><subject>Judgments</subject><subject>Legal Aspects of Computing</subject><subject>Litigation</subject><subject>Media Law</subject><subject>Mediation</subject><subject>Original Research</subject><subject>Parameter identification</subject><subject>Philosophy of Law</subject><subject>Prediction models</subject><subject>Structural hierarchy</subject><issn>0924-8463</issn><issn>1572-8382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1qAyEUhaW00DTtC3Q10LWpXh3jLEPoHwS6SdfiqBMMkzHVGUry9DVJIRRKcSEev6PnchC6p2RCCZk-JkpKIjABikkFkuLqAo1oOQUsmYRLNMoqx5ILdo1uUloTQipRsRGyy6-AW71z0dmiGfb7XdGGlTe41ikrm2BdWzQhFtsMeNP7blWYMMS-sM745EOXCt9lqUt9HPJ9OB76qE1GfNoOvUu36KrRbXJ3P_sYfTw_LeevePH-8jafLbBhUvS4NtLaBlipOZUEagNlTQWVoKkuOZR5LsENpZpXkjHDmbQOoBZTJ62pS8fG6OH07jaGz8GlXq1z1C5_qaCUTFSEcX6mVrp1yndNOKTd-GTUbEoBgBMBmZr8QeVl3cbnCV3js_7LACeDiSGl6Bq1jX6j405Rog4lqVNJKpekjiWpKpvYyZQy3K1cPCf-x_UNRyCULQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bagherian-Marandi, Navid</creator><creator>Ravanshadnia, Mehdi</creator><creator>Akbarzadeh-T, Mohammad-R.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ILT</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes</title><author>Bagherian-Marandi, Navid ; Ravanshadnia, Mehdi ; Akbarzadeh-T, Mohammad-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-bc8ddf235a41802bc25b16182a1a542528164c11a49833c438de22b67e8dcb5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Building</topic><topic>Computer Science</topic><topic>Construction contracts</topic><topic>Construction industry</topic><topic>Contracts</topic><topic>Court decisions</topic><topic>Decision making</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Information Storage and Retrieval</topic><topic>Intellectual Property</topic><topic>IT Law</topic><topic>Judgments</topic><topic>Legal Aspects of Computing</topic><topic>Litigation</topic><topic>Media Law</topic><topic>Mediation</topic><topic>Original Research</topic><topic>Parameter identification</topic><topic>Philosophy of Law</topic><topic>Prediction models</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagherian-Marandi, Navid</creatorcontrib><creatorcontrib>Ravanshadnia, Mehdi</creatorcontrib><creatorcontrib>Akbarzadeh-T, Mohammad-R.</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: LegalTrac</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Artificial intelligence and law</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagherian-Marandi, Navid</au><au>Ravanshadnia, Mehdi</au><au>Akbarzadeh-T, Mohammad-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes</atitle><jtitle>Artificial intelligence and law</jtitle><stitle>Artif Intell Law</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>29</volume><issue>4</issue><spage>453</spage><epage>484</epage><pages>453-484</pages><issn>0924-8463</issn><eissn>1572-8382</eissn><abstract>The dynamic nature and increasing complexity of the construction industry have led to increased conflicts in construction projects. An accurate prediction of the outcome of a dispute resolution in courts could effectively reduce the number of disputes that would otherwise conclude by spending more money through litigation. This study aims to introduce a two-layered fuzzy logic model for predicting court decisions in construction contract disputes. 100 cases of construction contract disputes are selected from the courts of Iran. A questionnaire survey is then conducted to extract a set of fuzzy rules for identifying important decision parameters and expert knowledge. Accordingly, a two-layered fuzzy logic-based decision-making architecture is proposed for the prediction model. Furthermore, the fuzzy system is trained based on 10-fold cross-validation. Analysis of results indicates that 51 out of the 100 cases are filed after the dissolution and termination of the contract show a significant impact of these clauses as the root cause in construction contract disputes. Our results present a proposed hierarchical fuzzy system that can correctly predict nearly 60% of the test data. Also, we demonstrate a methodology of using argument before ML to establish interpretable AI models. Based on our findings, a fuzzy model with a hierarchical structure may be used as a simple and efficient method for predicting court decisions in construction contract disputes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10506-021-09281-9</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-8463
ispartof Artificial intelligence and law, 2021-12, Vol.29 (4), p.453-484
issn 0924-8463
1572-8382
language eng
recordid cdi_proquest_journals_2583690344
source HeinOnline Law Journal Library; SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Building
Computer Science
Construction contracts
Construction industry
Contracts
Court decisions
Decision making
Fuzzy algorithms
Fuzzy logic
Fuzzy sets
Fuzzy systems
Information Storage and Retrieval
Intellectual Property
IT Law
Judgments
Legal Aspects of Computing
Litigation
Media Law
Mediation
Original Research
Parameter identification
Philosophy of Law
Prediction models
Structural hierarchy
title Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-layered%20fuzzy%20logic-based%20model%20for%20predicting%20court%20decisions%20in%20construction%20contract%20disputes&rft.jtitle=Artificial%20intelligence%20and%20law&rft.au=Bagherian-Marandi,%20Navid&rft.date=2021-12-01&rft.volume=29&rft.issue=4&rft.spage=453&rft.epage=484&rft.pages=453-484&rft.issn=0924-8463&rft.eissn=1572-8382&rft_id=info:doi/10.1007/s10506-021-09281-9&rft_dat=%3Cgale_proqu%3EA712224062%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583690344&rft_id=info:pmid/&rft_galeid=A712224062&rfr_iscdi=true