Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works
Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network autom...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2021-12, Vol.33 (23), p.1317-1320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1320 |
---|---|
container_issue | 23 |
container_start_page | 1317 |
container_title | IEEE photonics technology letters |
container_volume | 33 |
creator | Rahman, Sabidur Seixas, Nilton F. S. Naznin, Mahmuda Figueiredo, Gustavo B. |
description | Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well. |
doi_str_mv | 10.1109/LPT.2021.3117482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2583635925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9558778</ieee_id><sourcerecordid>2583635925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUvA89Ykk-wm3kqxKqxasMXjkt1k7Va70SSL-O9NafE0b4b3ZpgPoUtKJpQSdVMulhNGGJ0ApQWX7AiNqOI0I6k7TpokTSmIU3QWwoYQygXwEVpNh-i2Onaux67Fi7WLru8a_Gzjj_MfAa9C17_jJ92su97i0mrfp8Etnulg8WscTGcD1r3B8yEO3uK3XeocnbT6M9iLQx2j1fxuOXvIypf7x9m0zBoAiJnOGy1VnjNoCiBU8JrVnEkDomaGc1UYDrqVSpr0IQDjbQ4GckVk3ZpGKxij6_3eL---BxtitXGD79PJigkJOQjFRHKRvavxLgRv2-rLd1vtfytKqh28KsGrdvCqA7wUudpHOmvtv10JIYtCwh_D52mG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583635925</pqid></control><display><type>article</type><title>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</title><source>IEEE Electronic Library (IEL)</source><creator>Rahman, Sabidur ; Seixas, Nilton F. S. ; Naznin, Mahmuda ; Figueiredo, Gustavo B.</creator><creatorcontrib>Rahman, Sabidur ; Seixas, Nilton F. S. ; Naznin, Mahmuda ; Figueiredo, Gustavo B.</creatorcontrib><description>Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2021.3117482</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Automation ; Cost analysis ; cost savings ; Data analysis ; data-driven algorithms ; Decision making ; Deep learning ; Fault location ; Heuristic algorithms ; Machine learning ; Optical fiber networks ; Optimization ; Photonic network automation ; Photonics ; Predictive models ; Reinforcement learning ; Resource allocation ; Resource management ; Service restoration ; Task complexity</subject><ispartof>IEEE photonics technology letters, 2021-12, Vol.33 (23), p.1317-1320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</citedby><cites>FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</cites><orcidid>0000-0001-9957-8336 ; 0000-0003-3124-5599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9558778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9558778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahman, Sabidur</creatorcontrib><creatorcontrib>Seixas, Nilton F. S.</creatorcontrib><creatorcontrib>Naznin, Mahmuda</creatorcontrib><creatorcontrib>Figueiredo, Gustavo B.</creatorcontrib><title>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Cost analysis</subject><subject>cost savings</subject><subject>Data analysis</subject><subject>data-driven algorithms</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Fault location</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Optical fiber networks</subject><subject>Optimization</subject><subject>Photonic network automation</subject><subject>Photonics</subject><subject>Predictive models</subject><subject>Reinforcement learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Service restoration</subject><subject>Task complexity</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wUvA89Ykk-wm3kqxKqxasMXjkt1k7Va70SSL-O9NafE0b4b3ZpgPoUtKJpQSdVMulhNGGJ0ApQWX7AiNqOI0I6k7TpokTSmIU3QWwoYQygXwEVpNh-i2Onaux67Fi7WLru8a_Gzjj_MfAa9C17_jJ92su97i0mrfp8Etnulg8WscTGcD1r3B8yEO3uK3XeocnbT6M9iLQx2j1fxuOXvIypf7x9m0zBoAiJnOGy1VnjNoCiBU8JrVnEkDomaGc1UYDrqVSpr0IQDjbQ4GckVk3ZpGKxij6_3eL---BxtitXGD79PJigkJOQjFRHKRvavxLgRv2-rLd1vtfytKqh28KsGrdvCqA7wUudpHOmvtv10JIYtCwh_D52mG</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Rahman, Sabidur</creator><creator>Seixas, Nilton F. S.</creator><creator>Naznin, Mahmuda</creator><creator>Figueiredo, Gustavo B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9957-8336</orcidid><orcidid>https://orcid.org/0000-0003-3124-5599</orcidid></search><sort><creationdate>20211201</creationdate><title>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</title><author>Rahman, Sabidur ; Seixas, Nilton F. S. ; Naznin, Mahmuda ; Figueiredo, Gustavo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Cost analysis</topic><topic>cost savings</topic><topic>Data analysis</topic><topic>data-driven algorithms</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Fault location</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Optical fiber networks</topic><topic>Optimization</topic><topic>Photonic network automation</topic><topic>Photonics</topic><topic>Predictive models</topic><topic>Reinforcement learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Service restoration</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Sabidur</creatorcontrib><creatorcontrib>Seixas, Nilton F. S.</creatorcontrib><creatorcontrib>Naznin, Mahmuda</creatorcontrib><creatorcontrib>Figueiredo, Gustavo B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahman, Sabidur</au><au>Seixas, Nilton F. S.</au><au>Naznin, Mahmuda</au><au>Figueiredo, Gustavo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>23</issue><spage>1317</spage><epage>1320</epage><pages>1317-1320</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2021.3117482</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9957-8336</orcidid><orcidid>https://orcid.org/0000-0003-3124-5599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2021-12, Vol.33 (23), p.1317-1320 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_proquest_journals_2583635925 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Automation Cost analysis cost savings Data analysis data-driven algorithms Decision making Deep learning Fault location Heuristic algorithms Machine learning Optical fiber networks Optimization Photonic network automation Photonics Predictive models Reinforcement learning Resource allocation Resource management Service restoration Task complexity |
title | Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automation%20of%20Photonic%20Networks%20Using%20Machine%20Learning:%20Case%20Studies%20and%20Future%20Works&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Rahman,%20Sabidur&rft.date=2021-12-01&rft.volume=33&rft.issue=23&rft.spage=1317&rft.epage=1320&rft.pages=1317-1320&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2021.3117482&rft_dat=%3Cproquest_RIE%3E2583635925%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583635925&rft_id=info:pmid/&rft_ieee_id=9558778&rfr_iscdi=true |