Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works

Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network autom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2021-12, Vol.33 (23), p.1317-1320
Hauptverfasser: Rahman, Sabidur, Seixas, Nilton F. S., Naznin, Mahmuda, Figueiredo, Gustavo B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1320
container_issue 23
container_start_page 1317
container_title IEEE photonics technology letters
container_volume 33
creator Rahman, Sabidur
Seixas, Nilton F. S.
Naznin, Mahmuda
Figueiredo, Gustavo B.
description Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well.
doi_str_mv 10.1109/LPT.2021.3117482
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2583635925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9558778</ieee_id><sourcerecordid>2583635925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUvA89Ykk-wm3kqxKqxasMXjkt1k7Va70SSL-O9NafE0b4b3ZpgPoUtKJpQSdVMulhNGGJ0ApQWX7AiNqOI0I6k7TpokTSmIU3QWwoYQygXwEVpNh-i2Onaux67Fi7WLru8a_Gzjj_MfAa9C17_jJ92su97i0mrfp8Etnulg8WscTGcD1r3B8yEO3uK3XeocnbT6M9iLQx2j1fxuOXvIypf7x9m0zBoAiJnOGy1VnjNoCiBU8JrVnEkDomaGc1UYDrqVSpr0IQDjbQ4GckVk3ZpGKxij6_3eL---BxtitXGD79PJigkJOQjFRHKRvavxLgRv2-rLd1vtfytKqh28KsGrdvCqA7wUudpHOmvtv10JIYtCwh_D52mG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583635925</pqid></control><display><type>article</type><title>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</title><source>IEEE Electronic Library (IEL)</source><creator>Rahman, Sabidur ; Seixas, Nilton F. S. ; Naznin, Mahmuda ; Figueiredo, Gustavo B.</creator><creatorcontrib>Rahman, Sabidur ; Seixas, Nilton F. S. ; Naznin, Mahmuda ; Figueiredo, Gustavo B.</creatorcontrib><description>Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2021.3117482</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Automation ; Cost analysis ; cost savings ; Data analysis ; data-driven algorithms ; Decision making ; Deep learning ; Fault location ; Heuristic algorithms ; Machine learning ; Optical fiber networks ; Optimization ; Photonic network automation ; Photonics ; Predictive models ; Reinforcement learning ; Resource allocation ; Resource management ; Service restoration ; Task complexity</subject><ispartof>IEEE photonics technology letters, 2021-12, Vol.33 (23), p.1317-1320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</citedby><cites>FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</cites><orcidid>0000-0001-9957-8336 ; 0000-0003-3124-5599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9558778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9558778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahman, Sabidur</creatorcontrib><creatorcontrib>Seixas, Nilton F. S.</creatorcontrib><creatorcontrib>Naznin, Mahmuda</creatorcontrib><creatorcontrib>Figueiredo, Gustavo B.</creatorcontrib><title>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Cost analysis</subject><subject>cost savings</subject><subject>Data analysis</subject><subject>data-driven algorithms</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Fault location</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Optical fiber networks</subject><subject>Optimization</subject><subject>Photonic network automation</subject><subject>Photonics</subject><subject>Predictive models</subject><subject>Reinforcement learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Service restoration</subject><subject>Task complexity</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wUvA89Ykk-wm3kqxKqxasMXjkt1k7Va70SSL-O9NafE0b4b3ZpgPoUtKJpQSdVMulhNGGJ0ApQWX7AiNqOI0I6k7TpokTSmIU3QWwoYQygXwEVpNh-i2Onaux67Fi7WLru8a_Gzjj_MfAa9C17_jJ92su97i0mrfp8Etnulg8WscTGcD1r3B8yEO3uK3XeocnbT6M9iLQx2j1fxuOXvIypf7x9m0zBoAiJnOGy1VnjNoCiBU8JrVnEkDomaGc1UYDrqVSpr0IQDjbQ4GckVk3ZpGKxij6_3eL---BxtitXGD79PJigkJOQjFRHKRvavxLgRv2-rLd1vtfytKqh28KsGrdvCqA7wUudpHOmvtv10JIYtCwh_D52mG</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Rahman, Sabidur</creator><creator>Seixas, Nilton F. S.</creator><creator>Naznin, Mahmuda</creator><creator>Figueiredo, Gustavo B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9957-8336</orcidid><orcidid>https://orcid.org/0000-0003-3124-5599</orcidid></search><sort><creationdate>20211201</creationdate><title>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</title><author>Rahman, Sabidur ; Seixas, Nilton F. S. ; Naznin, Mahmuda ; Figueiredo, Gustavo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a6ca896623c730154b2b428d35b2d4497d43af898d1093324f63d36908bfdca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Cost analysis</topic><topic>cost savings</topic><topic>Data analysis</topic><topic>data-driven algorithms</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Fault location</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Optical fiber networks</topic><topic>Optimization</topic><topic>Photonic network automation</topic><topic>Photonics</topic><topic>Predictive models</topic><topic>Reinforcement learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Service restoration</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Sabidur</creatorcontrib><creatorcontrib>Seixas, Nilton F. S.</creatorcontrib><creatorcontrib>Naznin, Mahmuda</creatorcontrib><creatorcontrib>Figueiredo, Gustavo B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahman, Sabidur</au><au>Seixas, Nilton F. S.</au><au>Naznin, Mahmuda</au><au>Figueiredo, Gustavo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>23</issue><spage>1317</spage><epage>1320</epage><pages>1317-1320</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>Although a "Self-Driving" photonic network is still a long way to go, many time-consuming complex tasks and decision making in photonic networks can be automated using machine learning, and other data-driven solutions. This study explores recent contributions towards photonic network automation, such as alarm prediction, fault localization, resource auto-scaling, quality of transmission prediction, dynamic controller placement, automated service restoration, resource allocation and optimization, minimization of electricity and power supply cost, user data analysis, etc. The studies explored in this letter, provide solution approaches to these problems using wide range of data-driven methods, machine learning, AI, and deep learning based methods. This study discusses different challenges involving these interesting research areas and provides directions for future research opportunities as well.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2021.3117482</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9957-8336</orcidid><orcidid>https://orcid.org/0000-0003-3124-5599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2021-12, Vol.33 (23), p.1317-1320
issn 1041-1135
1941-0174
language eng
recordid cdi_proquest_journals_2583635925
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Automation
Cost analysis
cost savings
Data analysis
data-driven algorithms
Decision making
Deep learning
Fault location
Heuristic algorithms
Machine learning
Optical fiber networks
Optimization
Photonic network automation
Photonics
Predictive models
Reinforcement learning
Resource allocation
Resource management
Service restoration
Task complexity
title Automation of Photonic Networks Using Machine Learning: Case Studies and Future Works
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automation%20of%20Photonic%20Networks%20Using%20Machine%20Learning:%20Case%20Studies%20and%20Future%20Works&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Rahman,%20Sabidur&rft.date=2021-12-01&rft.volume=33&rft.issue=23&rft.spage=1317&rft.epage=1320&rft.pages=1317-1320&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2021.3117482&rft_dat=%3Cproquest_RIE%3E2583635925%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583635925&rft_id=info:pmid/&rft_ieee_id=9558778&rfr_iscdi=true