相同侧视方向异轨SAR图像差异化约束连接点提取
为了实现SAR图像区域网平差时连接点的自动稳健提取,面向相同侧视方向、近似平行轨道的异轨SAR图像,针对其方位向相对几何畸变较小、距离向相对几何畸变较大的特点,提出一种采用差异化约束的SAR图像连接点提取方法。该方法在构建SAR图像影像金字塔的基础上,采用增大方位向边长的长方形匹配窗口由金字塔顶层向下逐层进行相关系数匹配,利用方位向强约束、距离向弱约束的差异化随机采样一致性算法剔除误匹配点,并利用方位向全局双线性变换模型与距离向局部双线性变换模型进行下层金字塔影像的匹配点位预测。采用Envisat ASAR图像和国产机载SAR图像分别进行了连接点提取试验,验证了本文方法的有效性。...
Gespeichert in:
Veröffentlicht in: | Ce hui xue bao 2018, Vol.47 (1), p.91-101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Ce hui xue bao |
container_volume | 47 |
creator | 靳国旺 熊新 张红敏 徐青 刘辉 王新田 |
description | 为了实现SAR图像区域网平差时连接点的自动稳健提取,面向相同侧视方向、近似平行轨道的异轨SAR图像,针对其方位向相对几何畸变较小、距离向相对几何畸变较大的特点,提出一种采用差异化约束的SAR图像连接点提取方法。该方法在构建SAR图像影像金字塔的基础上,采用增大方位向边长的长方形匹配窗口由金字塔顶层向下逐层进行相关系数匹配,利用方位向强约束、距离向弱约束的差异化随机采样一致性算法剔除误匹配点,并利用方位向全局双线性变换模型与距离向局部双线性变换模型进行下层金字塔影像的匹配点位预测。采用Envisat ASAR图像和国产机载SAR图像分别进行了连接点提取试验,验证了本文方法的有效性。 |
doi_str_mv | 10.11947/j.AGCS.2018.20170129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_chong</sourceid><recordid>TN_cdi_proquest_journals_2583540908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674427802</cqvip_id><sourcerecordid>2583540908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558-ab6bb1b900343893243cb7037fd91684affb36cdbae00ae5901c6d14b1e7585e3</originalsourceid><addsrcrecordid>eNpNjb9OAkEYxDdGEwnyCDZaH37f7e7tbmUIUTQhMRH6y-1xhxDlz50UtphYEcCGhqiVYmWrGMWXcQ8eQwwWNjOTyS8zhGwjZBEVE3v1bK6QL2VtQPkrAtBWaySFAGghV3z9X94kmTiuaQDOqOBUpcj-fPxmhr3v2WQxuUlGUzO8NR_dxedzKXdqxjNzPTCvL8vG9Ebz96fk7mHxdZ_0H-fdaTIYmsFoi2yE3nkcZP48TcqHB-X8kVU8KRznc0XL51xanna0Rq0AKKNSUZtRXwugIqwodCTzwlBTx69oLwDwAq4AfaeCTGMguOQBTZPd1WwrarY7QXzp1pudqLF8dG0uKWegQC6pnRXlnzUb1XatUXVbUe3Ci65cRzBmCwk2_QHeLmv-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583540908</pqid></control><display><type>article</type><title>相同侧视方向异轨SAR图像差异化约束连接点提取</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>靳国旺;熊新;张红敏;徐青;刘辉;王新田</creator><creatorcontrib>靳国旺;熊新;张红敏;徐青;刘辉;王新田</creatorcontrib><description>为了实现SAR图像区域网平差时连接点的自动稳健提取,面向相同侧视方向、近似平行轨道的异轨SAR图像,针对其方位向相对几何畸变较小、距离向相对几何畸变较大的特点,提出一种采用差异化约束的SAR图像连接点提取方法。该方法在构建SAR图像影像金字塔的基础上,采用增大方位向边长的长方形匹配窗口由金字塔顶层向下逐层进行相关系数匹配,利用方位向强约束、距离向弱约束的差异化随机采样一致性算法剔除误匹配点,并利用方位向全局双线性变换模型与距离向局部双线性变换模型进行下层金字塔影像的匹配点位预测。采用Envisat ASAR图像和国产机载SAR图像分别进行了连接点提取试验,验证了本文方法的有效性。</description><identifier>ISSN: 1001-1595</identifier><identifier>EISSN: 1001-1595</identifier><identifier>DOI: 10.11947/j.AGCS.2018.20170129</identifier><language>chi ; eng</language><publisher>Beijing: Surveying and Mapping Press</publisher><subject>Algorithms ; Azimuth ; Correlation coefficient ; Correlation coefficients ; Mathematical analysis ; Pyramids ; Synthetic aperture radar ; 匹配 ; 合成孔径雷达 ; 差异化约束 ; 提取 ; 连接点</subject><ispartof>Ce hui xue bao, 2018, Vol.47 (1), p.91-101</ispartof><rights>Jan 2018. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/90069X/90069X.jpg</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>靳国旺;熊新;张红敏;徐青;刘辉;王新田</creatorcontrib><title>相同侧视方向异轨SAR图像差异化约束连接点提取</title><title>Ce hui xue bao</title><addtitle>Acta Geodaetica et Cartographica Sinica</addtitle><description>为了实现SAR图像区域网平差时连接点的自动稳健提取,面向相同侧视方向、近似平行轨道的异轨SAR图像,针对其方位向相对几何畸变较小、距离向相对几何畸变较大的特点,提出一种采用差异化约束的SAR图像连接点提取方法。该方法在构建SAR图像影像金字塔的基础上,采用增大方位向边长的长方形匹配窗口由金字塔顶层向下逐层进行相关系数匹配,利用方位向强约束、距离向弱约束的差异化随机采样一致性算法剔除误匹配点,并利用方位向全局双线性变换模型与距离向局部双线性变换模型进行下层金字塔影像的匹配点位预测。采用Envisat ASAR图像和国产机载SAR图像分别进行了连接点提取试验,验证了本文方法的有效性。</description><subject>Algorithms</subject><subject>Azimuth</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Mathematical analysis</subject><subject>Pyramids</subject><subject>Synthetic aperture radar</subject><subject>匹配</subject><subject>合成孔径雷达</subject><subject>差异化约束</subject><subject>提取</subject><subject>连接点</subject><issn>1001-1595</issn><issn>1001-1595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNjb9OAkEYxDdGEwnyCDZaH37f7e7tbmUIUTQhMRH6y-1xhxDlz50UtphYEcCGhqiVYmWrGMWXcQ8eQwwWNjOTyS8zhGwjZBEVE3v1bK6QL2VtQPkrAtBWaySFAGghV3z9X94kmTiuaQDOqOBUpcj-fPxmhr3v2WQxuUlGUzO8NR_dxedzKXdqxjNzPTCvL8vG9Ebz96fk7mHxdZ_0H-fdaTIYmsFoi2yE3nkcZP48TcqHB-X8kVU8KRznc0XL51xanna0Rq0AKKNSUZtRXwugIqwodCTzwlBTx69oLwDwAq4AfaeCTGMguOQBTZPd1WwrarY7QXzp1pudqLF8dG0uKWegQC6pnRXlnzUb1XatUXVbUe3Ci65cRzBmCwk2_QHeLmv-</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>靳国旺;熊新;张红敏;徐青;刘辉;王新田</creator><general>Surveying and Mapping Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>2018</creationdate><title>相同侧视方向异轨SAR图像差异化约束连接点提取</title><author>靳国旺;熊新;张红敏;徐青;刘辉;王新田</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558-ab6bb1b900343893243cb7037fd91684affb36cdbae00ae5901c6d14b1e7585e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Azimuth</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Mathematical analysis</topic><topic>Pyramids</topic><topic>Synthetic aperture radar</topic><topic>匹配</topic><topic>合成孔径雷达</topic><topic>差异化约束</topic><topic>提取</topic><topic>连接点</topic><toplevel>online_resources</toplevel><creatorcontrib>靳国旺;熊新;张红敏;徐青;刘辉;王新田</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Ce hui xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>靳国旺;熊新;张红敏;徐青;刘辉;王新田</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>相同侧视方向异轨SAR图像差异化约束连接点提取</atitle><jtitle>Ce hui xue bao</jtitle><addtitle>Acta Geodaetica et Cartographica Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>47</volume><issue>1</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>1001-1595</issn><eissn>1001-1595</eissn><abstract>为了实现SAR图像区域网平差时连接点的自动稳健提取,面向相同侧视方向、近似平行轨道的异轨SAR图像,针对其方位向相对几何畸变较小、距离向相对几何畸变较大的特点,提出一种采用差异化约束的SAR图像连接点提取方法。该方法在构建SAR图像影像金字塔的基础上,采用增大方位向边长的长方形匹配窗口由金字塔顶层向下逐层进行相关系数匹配,利用方位向强约束、距离向弱约束的差异化随机采样一致性算法剔除误匹配点,并利用方位向全局双线性变换模型与距离向局部双线性变换模型进行下层金字塔影像的匹配点位预测。采用Envisat ASAR图像和国产机载SAR图像分别进行了连接点提取试验,验证了本文方法的有效性。</abstract><cop>Beijing</cop><pub>Surveying and Mapping Press</pub><doi>10.11947/j.AGCS.2018.20170129</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-1595 |
ispartof | Ce hui xue bao, 2018, Vol.47 (1), p.91-101 |
issn | 1001-1595 1001-1595 |
language | chi ; eng |
recordid | cdi_proquest_journals_2583540908 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Azimuth Correlation coefficient Correlation coefficients Mathematical analysis Pyramids Synthetic aperture radar 匹配 合成孔径雷达 差异化约束 提取 连接点 |
title | 相同侧视方向异轨SAR图像差异化约束连接点提取 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E7%9B%B8%E5%90%8C%E4%BE%A7%E8%A7%86%E6%96%B9%E5%90%91%E5%BC%82%E8%BD%A8SAR%E5%9B%BE%E5%83%8F%E5%B7%AE%E5%BC%82%E5%8C%96%E7%BA%A6%E6%9D%9F%E8%BF%9E%E6%8E%A5%E7%82%B9%E6%8F%90%E5%8F%96&rft.jtitle=Ce%20hui%20xue%20bao&rft.au=%E9%9D%B3%E5%9B%BD%E6%97%BA;%E7%86%8A%E6%96%B0;%E5%BC%A0%E7%BA%A2%E6%95%8F;%E5%BE%90%E9%9D%92;%E5%88%98%E8%BE%89;%E7%8E%8B%E6%96%B0%E7%94%B0&rft.date=2018&rft.volume=47&rft.issue=1&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=1001-1595&rft.eissn=1001-1595&rft_id=info:doi/10.11947/j.AGCS.2018.20170129&rft_dat=%3Cproquest_chong%3E2583540908%3C/proquest_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583540908&rft_id=info:pmid/&rft_cqvip_id=674427802&rfr_iscdi=true |