Intelligent implementation of residential demand response using multiagent system and deep neural networks
A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are dem...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2021-11, Vol.33 (22), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 33 |
creator | Saeed, Faisal Paul, Anand Ahmed, Muhammad Jamal Gul, Malik Junaid Jami Hong, Won‐Hwa Seo, Hyuncheol |
description | A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models. |
doi_str_mv | 10.1002/cpe.6168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583533034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583533034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbBj7DgxUvq_k02Rym1Fgp60POySSZla7KJuwml395NK948zePN783AQ-iekgUlhD2VPSxSmqoLNKOSs4SkXFz-aZZeo5sQ9oRQSjidof3GDdA0dgduwLbtG2ijMoPtHO5q7CHYKhrWNLiC1rhqsvrOBcBjsG6H27GJ21M8HMMALZ6gCqDHDkYfcw6GQ-e_wi26qk0T4O53ztHny-pj-Zps39ab5fM2KVnOVSKKCoSAyuSUqUzSopJZbkqZ1aqADIoyJzIXQjElWc2NqotS1VKIjKcyT6M1Rw_nu73vvkcIg953o3fxpWZScck54SJSj2eq9F0IHmrde9saf9SU6KlJHZvUU5MRTc7owTZw_JfTy_fVif8BtDB2cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583533034</pqid></control><display><type>article</type><title>Intelligent implementation of residential demand response using multiagent system and deep neural networks</title><source>Access via Wiley Online Library</source><creator>Saeed, Faisal ; Paul, Anand ; Ahmed, Muhammad Jamal ; Gul, Malik Junaid Jami ; Hong, Won‐Hwa ; Seo, Hyuncheol</creator><creatorcontrib>Saeed, Faisal ; Paul, Anand ; Ahmed, Muhammad Jamal ; Gul, Malik Junaid Jami ; Hong, Won‐Hwa ; Seo, Hyuncheol</creatorcontrib><description>A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6168</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Artificial neural networks ; CNN‐LSTM ; Computer networks ; demand response ; Electric power demand ; Electrical loads ; electricity ; Energy management ; Intelligent agents ; LSTM ; multiagent system ; Multiagent systems ; Neural networks ; Retail stores ; Smart buildings</subject><ispartof>Concurrency and computation, 2021-11, Vol.33 (22), p.n/a</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</citedby><cites>FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</cites><orcidid>0000-0002-0737-2021 ; 0000-0002-2371-4829 ; 0000-0002-8453-3319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6168$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6168$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Saeed, Faisal</creatorcontrib><creatorcontrib>Paul, Anand</creatorcontrib><creatorcontrib>Ahmed, Muhammad Jamal</creatorcontrib><creatorcontrib>Gul, Malik Junaid Jami</creatorcontrib><creatorcontrib>Hong, Won‐Hwa</creatorcontrib><creatorcontrib>Seo, Hyuncheol</creatorcontrib><title>Intelligent implementation of residential demand response using multiagent system and deep neural networks</title><title>Concurrency and computation</title><description>A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models.</description><subject>Artificial neural networks</subject><subject>CNN‐LSTM</subject><subject>Computer networks</subject><subject>demand response</subject><subject>Electric power demand</subject><subject>Electrical loads</subject><subject>electricity</subject><subject>Energy management</subject><subject>Intelligent agents</subject><subject>LSTM</subject><subject>multiagent system</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Retail stores</subject><subject>Smart buildings</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbBj7DgxUvq_k02Rym1Fgp60POySSZla7KJuwml395NK948zePN783AQ-iekgUlhD2VPSxSmqoLNKOSs4SkXFz-aZZeo5sQ9oRQSjidof3GDdA0dgduwLbtG2ijMoPtHO5q7CHYKhrWNLiC1rhqsvrOBcBjsG6H27GJ21M8HMMALZ6gCqDHDkYfcw6GQ-e_wi26qk0T4O53ztHny-pj-Zps39ab5fM2KVnOVSKKCoSAyuSUqUzSopJZbkqZ1aqADIoyJzIXQjElWc2NqotS1VKIjKcyT6M1Rw_nu73vvkcIg953o3fxpWZScck54SJSj2eq9F0IHmrde9saf9SU6KlJHZvUU5MRTc7owTZw_JfTy_fVif8BtDB2cg</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Saeed, Faisal</creator><creator>Paul, Anand</creator><creator>Ahmed, Muhammad Jamal</creator><creator>Gul, Malik Junaid Jami</creator><creator>Hong, Won‐Hwa</creator><creator>Seo, Hyuncheol</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0737-2021</orcidid><orcidid>https://orcid.org/0000-0002-2371-4829</orcidid><orcidid>https://orcid.org/0000-0002-8453-3319</orcidid></search><sort><creationdate>20211125</creationdate><title>Intelligent implementation of residential demand response using multiagent system and deep neural networks</title><author>Saeed, Faisal ; Paul, Anand ; Ahmed, Muhammad Jamal ; Gul, Malik Junaid Jami ; Hong, Won‐Hwa ; Seo, Hyuncheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>CNN‐LSTM</topic><topic>Computer networks</topic><topic>demand response</topic><topic>Electric power demand</topic><topic>Electrical loads</topic><topic>electricity</topic><topic>Energy management</topic><topic>Intelligent agents</topic><topic>LSTM</topic><topic>multiagent system</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Retail stores</topic><topic>Smart buildings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed, Faisal</creatorcontrib><creatorcontrib>Paul, Anand</creatorcontrib><creatorcontrib>Ahmed, Muhammad Jamal</creatorcontrib><creatorcontrib>Gul, Malik Junaid Jami</creatorcontrib><creatorcontrib>Hong, Won‐Hwa</creatorcontrib><creatorcontrib>Seo, Hyuncheol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed, Faisal</au><au>Paul, Anand</au><au>Ahmed, Muhammad Jamal</au><au>Gul, Malik Junaid Jami</au><au>Hong, Won‐Hwa</au><au>Seo, Hyuncheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent implementation of residential demand response using multiagent system and deep neural networks</atitle><jtitle>Concurrency and computation</jtitle><date>2021-11-25</date><risdate>2021</risdate><volume>33</volume><issue>22</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cpe.6168</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0737-2021</orcidid><orcidid>https://orcid.org/0000-0002-2371-4829</orcidid><orcidid>https://orcid.org/0000-0002-8453-3319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2021-11, Vol.33 (22), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2583533034 |
source | Access via Wiley Online Library |
subjects | Artificial neural networks CNN‐LSTM Computer networks demand response Electric power demand Electrical loads electricity Energy management Intelligent agents LSTM multiagent system Multiagent systems Neural networks Retail stores Smart buildings |
title | Intelligent implementation of residential demand response using multiagent system and deep neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20implementation%20of%20residential%20demand%20response%20using%20multiagent%20system%20and%20deep%20neural%20networks&rft.jtitle=Concurrency%20and%20computation&rft.au=Saeed,%20Faisal&rft.date=2021-11-25&rft.volume=33&rft.issue=22&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6168&rft_dat=%3Cproquest_cross%3E2583533034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583533034&rft_id=info:pmid/&rfr_iscdi=true |