Intelligent implementation of residential demand response using multiagent system and deep neural networks

A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2021-11, Vol.33 (22), p.n/a
Hauptverfasser: Saeed, Faisal, Paul, Anand, Ahmed, Muhammad Jamal, Gul, Malik Junaid Jami, Hong, Won‐Hwa, Seo, Hyuncheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Concurrency and computation
container_volume 33
creator Saeed, Faisal
Paul, Anand
Ahmed, Muhammad Jamal
Gul, Malik Junaid Jami
Hong, Won‐Hwa
Seo, Hyuncheol
description A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models.
doi_str_mv 10.1002/cpe.6168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583533034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583533034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbBj7DgxUvq_k02Rym1Fgp60POySSZla7KJuwml395NK948zePN783AQ-iekgUlhD2VPSxSmqoLNKOSs4SkXFz-aZZeo5sQ9oRQSjidof3GDdA0dgduwLbtG2ijMoPtHO5q7CHYKhrWNLiC1rhqsvrOBcBjsG6H27GJ21M8HMMALZ6gCqDHDkYfcw6GQ-e_wi26qk0T4O53ztHny-pj-Zps39ab5fM2KVnOVSKKCoSAyuSUqUzSopJZbkqZ1aqADIoyJzIXQjElWc2NqotS1VKIjKcyT6M1Rw_nu73vvkcIg953o3fxpWZScck54SJSj2eq9F0IHmrde9saf9SU6KlJHZvUU5MRTc7owTZw_JfTy_fVif8BtDB2cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583533034</pqid></control><display><type>article</type><title>Intelligent implementation of residential demand response using multiagent system and deep neural networks</title><source>Access via Wiley Online Library</source><creator>Saeed, Faisal ; Paul, Anand ; Ahmed, Muhammad Jamal ; Gul, Malik Junaid Jami ; Hong, Won‐Hwa ; Seo, Hyuncheol</creator><creatorcontrib>Saeed, Faisal ; Paul, Anand ; Ahmed, Muhammad Jamal ; Gul, Malik Junaid Jami ; Hong, Won‐Hwa ; Seo, Hyuncheol</creatorcontrib><description>A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6168</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial neural networks ; CNN‐LSTM ; Computer networks ; demand response ; Electric power demand ; Electrical loads ; electricity ; Energy management ; Intelligent agents ; LSTM ; multiagent system ; Multiagent systems ; Neural networks ; Retail stores ; Smart buildings</subject><ispartof>Concurrency and computation, 2021-11, Vol.33 (22), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</citedby><cites>FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</cites><orcidid>0000-0002-0737-2021 ; 0000-0002-2371-4829 ; 0000-0002-8453-3319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6168$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6168$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Saeed, Faisal</creatorcontrib><creatorcontrib>Paul, Anand</creatorcontrib><creatorcontrib>Ahmed, Muhammad Jamal</creatorcontrib><creatorcontrib>Gul, Malik Junaid Jami</creatorcontrib><creatorcontrib>Hong, Won‐Hwa</creatorcontrib><creatorcontrib>Seo, Hyuncheol</creatorcontrib><title>Intelligent implementation of residential demand response using multiagent system and deep neural networks</title><title>Concurrency and computation</title><description>A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models.</description><subject>Artificial neural networks</subject><subject>CNN‐LSTM</subject><subject>Computer networks</subject><subject>demand response</subject><subject>Electric power demand</subject><subject>Electrical loads</subject><subject>electricity</subject><subject>Energy management</subject><subject>Intelligent agents</subject><subject>LSTM</subject><subject>multiagent system</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Retail stores</subject><subject>Smart buildings</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbBj7DgxUvq_k02Rym1Fgp60POySSZla7KJuwml395NK948zePN783AQ-iekgUlhD2VPSxSmqoLNKOSs4SkXFz-aZZeo5sQ9oRQSjidof3GDdA0dgduwLbtG2ijMoPtHO5q7CHYKhrWNLiC1rhqsvrOBcBjsG6H27GJ21M8HMMALZ6gCqDHDkYfcw6GQ-e_wi26qk0T4O53ztHny-pj-Zps39ab5fM2KVnOVSKKCoSAyuSUqUzSopJZbkqZ1aqADIoyJzIXQjElWc2NqotS1VKIjKcyT6M1Rw_nu73vvkcIg953o3fxpWZScck54SJSj2eq9F0IHmrde9saf9SU6KlJHZvUU5MRTc7owTZw_JfTy_fVif8BtDB2cg</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Saeed, Faisal</creator><creator>Paul, Anand</creator><creator>Ahmed, Muhammad Jamal</creator><creator>Gul, Malik Junaid Jami</creator><creator>Hong, Won‐Hwa</creator><creator>Seo, Hyuncheol</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0737-2021</orcidid><orcidid>https://orcid.org/0000-0002-2371-4829</orcidid><orcidid>https://orcid.org/0000-0002-8453-3319</orcidid></search><sort><creationdate>20211125</creationdate><title>Intelligent implementation of residential demand response using multiagent system and deep neural networks</title><author>Saeed, Faisal ; Paul, Anand ; Ahmed, Muhammad Jamal ; Gul, Malik Junaid Jami ; Hong, Won‐Hwa ; Seo, Hyuncheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-4bde44eda9128751bd579ac57f8be7ebc90594482852f3a8fbc8f5447365962f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>CNN‐LSTM</topic><topic>Computer networks</topic><topic>demand response</topic><topic>Electric power demand</topic><topic>Electrical loads</topic><topic>electricity</topic><topic>Energy management</topic><topic>Intelligent agents</topic><topic>LSTM</topic><topic>multiagent system</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Retail stores</topic><topic>Smart buildings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed, Faisal</creatorcontrib><creatorcontrib>Paul, Anand</creatorcontrib><creatorcontrib>Ahmed, Muhammad Jamal</creatorcontrib><creatorcontrib>Gul, Malik Junaid Jami</creatorcontrib><creatorcontrib>Hong, Won‐Hwa</creatorcontrib><creatorcontrib>Seo, Hyuncheol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed, Faisal</au><au>Paul, Anand</au><au>Ahmed, Muhammad Jamal</au><au>Gul, Malik Junaid Jami</au><au>Hong, Won‐Hwa</au><au>Seo, Hyuncheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent implementation of residential demand response using multiagent system and deep neural networks</atitle><jtitle>Concurrency and computation</jtitle><date>2021-11-25</date><risdate>2021</risdate><volume>33</volume><issue>22</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>A successful implementation of demand response (DR) always depends on proper policy and their empower technologies. This article proposed an intelligent multiagent system to idealize the residential DR in distributed network. In our model, the primary stakeholders (smart homes and retailers) are demonstrated as a multifunctional intelligent agent. Home agents (HAs) are able to predict and schedule the energy load and retailer agents (RAs) predicts wholesale market price, sells energy to HAs. Both HAs and RAs are modeled to predict the real‐time pricing. Deep neural networks, that is, long short‐term memory network and hybrid CNN‐LSTM are used to predict the electricity load and energy price. Simulation results present good accuracy. Proposed work is compared with existing model w.r.t RMSE, MSE, and MAE. Comparison shows our model outperformed the existing models.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpe.6168</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0737-2021</orcidid><orcidid>https://orcid.org/0000-0002-2371-4829</orcidid><orcidid>https://orcid.org/0000-0002-8453-3319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2021-11, Vol.33 (22), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2583533034
source Access via Wiley Online Library
subjects Artificial neural networks
CNN‐LSTM
Computer networks
demand response
Electric power demand
Electrical loads
electricity
Energy management
Intelligent agents
LSTM
multiagent system
Multiagent systems
Neural networks
Retail stores
Smart buildings
title Intelligent implementation of residential demand response using multiagent system and deep neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20implementation%20of%20residential%20demand%20response%20using%20multiagent%20system%20and%20deep%20neural%20networks&rft.jtitle=Concurrency%20and%20computation&rft.au=Saeed,%20Faisal&rft.date=2021-11-25&rft.volume=33&rft.issue=22&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6168&rft_dat=%3Cproquest_cross%3E2583533034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583533034&rft_id=info:pmid/&rfr_iscdi=true