ST-CFSFDP:快速搜索密度峰值的时空聚类算法

时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ce hui xue bao 2019-11, Vol.48 (11), p.1380
Hauptverfasser: 王培晓, 张恒才, 王海波, 吴升
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1380
container_title Ce hui xue bao
container_volume 48
creator 王培晓
张恒才
王海波
吴升
description 时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。
doi_str_mv 10.11947/j.AGCS.2019.20180538
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2583499020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583499020</sourcerecordid><originalsourceid>FETCH-proquest_journals_25834990203</originalsourceid><addsrcrecordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwtAQRFgamxhZMDJyGBgaGuoamlqYsSGwOBq7i4iwDA1MLEzNTTgbz4BBdZ7dgN5cAq6f7V79smP9swpznWxY9Xd_2dNeyp5s3PG3Y83xWy7Pp256v3PWicdbzjbufr5v-bPNUHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzK1MDaxtDQwMjAmThUAdnxMBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583499020</pqid></control><display><type>article</type><title>ST-CFSFDP:快速搜索密度峰值的时空聚类算法</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>王培晓 ; 张恒才 ; 王海波 ; 吴升</creator><creatorcontrib>王培晓 ; 张恒才 ; 王海波 ; 吴升</creatorcontrib><description>时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。</description><identifier>ISSN: 1001-1595</identifier><identifier>EISSN: 1001-1595</identifier><identifier>DOI: 10.11947/j.AGCS.2019.20180538</identifier><language>chi ; eng</language><publisher>Beijing: Surveying and Mapping Press</publisher><subject>Algorithms ; Big Data ; Clustering ; Data mining ; Density ; Optics ; Searching ; Spatiotemporal data</subject><ispartof>Ce hui xue bao, 2019-11, Vol.48 (11), p.1380</ispartof><rights>Nov 2019. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>王培晓</creatorcontrib><creatorcontrib>张恒才</creatorcontrib><creatorcontrib>王海波</creatorcontrib><creatorcontrib>吴升</creatorcontrib><title>ST-CFSFDP:快速搜索密度峰值的时空聚类算法</title><title>Ce hui xue bao</title><description>时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Density</subject><subject>Optics</subject><subject>Searching</subject><subject>Spatiotemporal data</subject><issn>1001-1595</issn><issn>1001-1595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwtAQRFgamxhZMDJyGBgaGuoamlqYsSGwOBq7i4iwDA1MLEzNTTgbz4BBdZ7dgN5cAq6f7V79smP9swpznWxY9Xd_2dNeyp5s3PG3Y83xWy7Pp256v3PWicdbzjbufr5v-bPNUHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzK1MDaxtDQwMjAmThUAdnxMBg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>王培晓</creator><creator>张恒才</creator><creator>王海波</creator><creator>吴升</creator><general>Surveying and Mapping Press</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20191101</creationdate><title>ST-CFSFDP:快速搜索密度峰值的时空聚类算法</title><author>王培晓 ; 张恒才 ; 王海波 ; 吴升</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25834990203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Density</topic><topic>Optics</topic><topic>Searching</topic><topic>Spatiotemporal data</topic><toplevel>online_resources</toplevel><creatorcontrib>王培晓</creatorcontrib><creatorcontrib>张恒才</creatorcontrib><creatorcontrib>王海波</creatorcontrib><creatorcontrib>吴升</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Ce hui xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王培晓</au><au>张恒才</au><au>王海波</au><au>吴升</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ST-CFSFDP:快速搜索密度峰值的时空聚类算法</atitle><jtitle>Ce hui xue bao</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>48</volume><issue>11</issue><spage>1380</spage><pages>1380-</pages><issn>1001-1595</issn><eissn>1001-1595</eissn><abstract>时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。</abstract><cop>Beijing</cop><pub>Surveying and Mapping Press</pub><doi>10.11947/j.AGCS.2019.20180538</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-1595
ispartof Ce hui xue bao, 2019-11, Vol.48 (11), p.1380
issn 1001-1595
1001-1595
language chi ; eng
recordid cdi_proquest_journals_2583499020
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Big Data
Clustering
Data mining
Density
Optics
Searching
Spatiotemporal data
title ST-CFSFDP:快速搜索密度峰值的时空聚类算法
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ST-CFSFDP:%E5%BF%AB%E9%80%9F%E6%90%9C%E7%B4%A2%E5%AF%86%E5%BA%A6%E5%B3%B0%E5%80%BC%E7%9A%84%E6%97%B6%E7%A9%BA%E8%81%9A%E7%B1%BB%E7%AE%97%E6%B3%95&rft.jtitle=Ce%20hui%20xue%20bao&rft.au=%E7%8E%8B%E5%9F%B9%E6%99%93&rft.date=2019-11-01&rft.volume=48&rft.issue=11&rft.spage=1380&rft.pages=1380-&rft.issn=1001-1595&rft.eissn=1001-1595&rft_id=info:doi/10.11947/j.AGCS.2019.20180538&rft_dat=%3Cproquest%3E2583499020%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583499020&rft_id=info:pmid/&rfr_iscdi=true