Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems
We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show th...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-11, Vol.388 (1), p.479-506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 1 |
container_start_page | 479 |
container_title | Communications in mathematical physics |
container_volume | 388 |
creator | Ferreira, Marina A. Lukkarinen, Jani Nota, Alessia Velázquez, Juan J. L. |
description | We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system. |
doi_str_mv | 10.1007/s00220-021-04201-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583476659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583476659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOduIkI6qAIhUYChOD5bh25SqxW9sZ2l9P2iCxMd1J9947vQ-hWwL3BKB8iACUAgZKMOQUCD6coQnJGcVQE36OJgAEMOOEX6KrGDcAUFPOJ-h74ZVs7UEm611mXbZMp1WGffbuHda73ra2CbbvsqVv--MtZsaH7K1vk1W-23qnXcpmXq77doxZ7mPSXbxGF0a2Ud_8zin6en76nM3x4uPldfa4wIpxlrBhVGvSKMOZUgQ4qXjTcKhovqpkyYqK8mLV5HWZs9rUWhumyhVjWpqSDB0aNkV3Y-42-F2vYxIb3wc3vBS0qFhecl7Ug4qOKhV8jEEbsQ22G3oKAuIIUYwQxQBRnCCKw2BioykOYrfW4S_6H9cPpQd21g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583476659</pqid></control><display><type>article</type><title>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Ferreira, Marina A. ; Lukkarinen, Jani ; Nota, Alessia ; Velázquez, Juan J. L.</creator><creatorcontrib>Ferreira, Marina A. ; Lukkarinen, Jani ; Nota, Alessia ; Velázquez, Juan J. L.</creatorcontrib><description>We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04201-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Asymptotic properties ; Classical and Quantum Gravitation ; Clusters ; Coagulation ; Complex Systems ; Equilibrium ; Equilibrium conditions ; Localization ; Mathematical and Computational Physics ; Mathematical Physics ; Monomers ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-11, Vol.388 (1), p.479-506</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</citedby><cites>FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</cites><orcidid>0000-0002-1259-4761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04201-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04201-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ferreira, Marina A.</creatorcontrib><creatorcontrib>Lukkarinen, Jani</creatorcontrib><creatorcontrib>Nota, Alessia</creatorcontrib><creatorcontrib>Velázquez, Juan J. L.</creatorcontrib><title>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Classical and Quantum Gravitation</subject><subject>Clusters</subject><subject>Coagulation</subject><subject>Complex Systems</subject><subject>Equilibrium</subject><subject>Equilibrium conditions</subject><subject>Localization</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Monomers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOduIkI6qAIhUYChOD5bh25SqxW9sZ2l9P2iCxMd1J9947vQ-hWwL3BKB8iACUAgZKMOQUCD6coQnJGcVQE36OJgAEMOOEX6KrGDcAUFPOJ-h74ZVs7UEm611mXbZMp1WGffbuHda73ra2CbbvsqVv--MtZsaH7K1vk1W-23qnXcpmXq77doxZ7mPSXbxGF0a2Ud_8zin6en76nM3x4uPldfa4wIpxlrBhVGvSKMOZUgQ4qXjTcKhovqpkyYqK8mLV5HWZs9rUWhumyhVjWpqSDB0aNkV3Y-42-F2vYxIb3wc3vBS0qFhecl7Ug4qOKhV8jEEbsQ22G3oKAuIIUYwQxQBRnCCKw2BioykOYrfW4S_6H9cPpQd21g</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ferreira, Marina A.</creator><creator>Lukkarinen, Jani</creator><creator>Nota, Alessia</creator><creator>Velázquez, Juan J. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1259-4761</orcidid></search><sort><creationdate>20211101</creationdate><title>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</title><author>Ferreira, Marina A. ; Lukkarinen, Jani ; Nota, Alessia ; Velázquez, Juan J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Classical and Quantum Gravitation</topic><topic>Clusters</topic><topic>Coagulation</topic><topic>Complex Systems</topic><topic>Equilibrium</topic><topic>Equilibrium conditions</topic><topic>Localization</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Monomers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Marina A.</creatorcontrib><creatorcontrib>Lukkarinen, Jani</creatorcontrib><creatorcontrib>Nota, Alessia</creatorcontrib><creatorcontrib>Velázquez, Juan J. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Marina A.</au><au>Lukkarinen, Jani</au><au>Nota, Alessia</au><au>Velázquez, Juan J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>388</volume><issue>1</issue><spage>479</spage><epage>506</epage><pages>479-506</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04201-z</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-1259-4761</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2021-11, Vol.388 (1), p.479-506 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2583476659 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymptotic methods Asymptotic properties Classical and Quantum Gravitation Clusters Coagulation Complex Systems Equilibrium Equilibrium conditions Localization Mathematical and Computational Physics Mathematical Physics Monomers Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20in%20Stationary%20Non-equilibrium%20Solutions%20for%20Multicomponent%20Coagulation%20Systems&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Ferreira,%20Marina%20A.&rft.date=2021-11-01&rft.volume=388&rft.issue=1&rft.spage=479&rft.epage=506&rft.pages=479-506&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04201-z&rft_dat=%3Cproquest_cross%3E2583476659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583476659&rft_id=info:pmid/&rfr_iscdi=true |