Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems

We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-11, Vol.388 (1), p.479-506
Hauptverfasser: Ferreira, Marina A., Lukkarinen, Jani, Nota, Alessia, Velázquez, Juan J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 1
container_start_page 479
container_title Communications in mathematical physics
container_volume 388
creator Ferreira, Marina A.
Lukkarinen, Jani
Nota, Alessia
Velázquez, Juan J. L.
description We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.
doi_str_mv 10.1007/s00220-021-04201-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583476659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583476659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOduIkI6qAIhUYChOD5bh25SqxW9sZ2l9P2iCxMd1J9947vQ-hWwL3BKB8iACUAgZKMOQUCD6coQnJGcVQE36OJgAEMOOEX6KrGDcAUFPOJ-h74ZVs7UEm611mXbZMp1WGffbuHda73ra2CbbvsqVv--MtZsaH7K1vk1W-23qnXcpmXq77doxZ7mPSXbxGF0a2Ud_8zin6en76nM3x4uPldfa4wIpxlrBhVGvSKMOZUgQ4qXjTcKhovqpkyYqK8mLV5HWZs9rUWhumyhVjWpqSDB0aNkV3Y-42-F2vYxIb3wc3vBS0qFhecl7Ug4qOKhV8jEEbsQ22G3oKAuIIUYwQxQBRnCCKw2BioykOYrfW4S_6H9cPpQd21g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583476659</pqid></control><display><type>article</type><title>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Ferreira, Marina A. ; Lukkarinen, Jani ; Nota, Alessia ; Velázquez, Juan J. L.</creator><creatorcontrib>Ferreira, Marina A. ; Lukkarinen, Jani ; Nota, Alessia ; Velázquez, Juan J. L.</creatorcontrib><description>We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04201-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Asymptotic properties ; Classical and Quantum Gravitation ; Clusters ; Coagulation ; Complex Systems ; Equilibrium ; Equilibrium conditions ; Localization ; Mathematical and Computational Physics ; Mathematical Physics ; Monomers ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-11, Vol.388 (1), p.479-506</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</citedby><cites>FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</cites><orcidid>0000-0002-1259-4761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04201-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04201-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ferreira, Marina A.</creatorcontrib><creatorcontrib>Lukkarinen, Jani</creatorcontrib><creatorcontrib>Nota, Alessia</creatorcontrib><creatorcontrib>Velázquez, Juan J. L.</creatorcontrib><title>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Classical and Quantum Gravitation</subject><subject>Clusters</subject><subject>Coagulation</subject><subject>Complex Systems</subject><subject>Equilibrium</subject><subject>Equilibrium conditions</subject><subject>Localization</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Monomers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOduIkI6qAIhUYChOD5bh25SqxW9sZ2l9P2iCxMd1J9947vQ-hWwL3BKB8iACUAgZKMOQUCD6coQnJGcVQE36OJgAEMOOEX6KrGDcAUFPOJ-h74ZVs7UEm611mXbZMp1WGffbuHda73ra2CbbvsqVv--MtZsaH7K1vk1W-23qnXcpmXq77doxZ7mPSXbxGF0a2Ud_8zin6en76nM3x4uPldfa4wIpxlrBhVGvSKMOZUgQ4qXjTcKhovqpkyYqK8mLV5HWZs9rUWhumyhVjWpqSDB0aNkV3Y-42-F2vYxIb3wc3vBS0qFhecl7Ug4qOKhV8jEEbsQ22G3oKAuIIUYwQxQBRnCCKw2BioykOYrfW4S_6H9cPpQd21g</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ferreira, Marina A.</creator><creator>Lukkarinen, Jani</creator><creator>Nota, Alessia</creator><creator>Velázquez, Juan J. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1259-4761</orcidid></search><sort><creationdate>20211101</creationdate><title>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</title><author>Ferreira, Marina A. ; Lukkarinen, Jani ; Nota, Alessia ; Velázquez, Juan J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f32ee1bcf63cc106186bb60824d8a7358265db497439f9eef3c7d33eaf71266b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Classical and Quantum Gravitation</topic><topic>Clusters</topic><topic>Coagulation</topic><topic>Complex Systems</topic><topic>Equilibrium</topic><topic>Equilibrium conditions</topic><topic>Localization</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Monomers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Marina A.</creatorcontrib><creatorcontrib>Lukkarinen, Jani</creatorcontrib><creatorcontrib>Nota, Alessia</creatorcontrib><creatorcontrib>Velázquez, Juan J. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Marina A.</au><au>Lukkarinen, Jani</au><au>Nota, Alessia</au><au>Velázquez, Juan J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>388</volume><issue>1</issue><spage>479</spage><epage>506</epage><pages>479-506</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04201-z</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-1259-4761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2021-11, Vol.388 (1), p.479-506
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2583476659
source Springer Nature - Complete Springer Journals
subjects Asymptotic methods
Asymptotic properties
Classical and Quantum Gravitation
Clusters
Coagulation
Complex Systems
Equilibrium
Equilibrium conditions
Localization
Mathematical and Computational Physics
Mathematical Physics
Monomers
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20in%20Stationary%20Non-equilibrium%20Solutions%20for%20Multicomponent%20Coagulation%20Systems&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Ferreira,%20Marina%20A.&rft.date=2021-11-01&rft.volume=388&rft.issue=1&rft.spage=479&rft.epage=506&rft.pages=479-506&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04201-z&rft_dat=%3Cproquest_cross%3E2583476659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583476659&rft_id=info:pmid/&rfr_iscdi=true