Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin‐Film Anodes

Understanding the fundamentals of surface decoration effects in phase‐separation materials, such as lithium titanate (LTO), is important for optimizing the lithium‐ion battery (LIB) performance. LTO polycrystalline thin‐film electrodes with and without doped Al–ZnO (AZO) surface coating decoration a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-10, Vol.31 (43), p.n/a
Hauptverfasser: Chen, Yue, Pan, Handian, Lin, Chun, Li, Jiaxin, Cai, Rongsheng, Haigh, Sarah J., Zhao, Guiying, Zhang, Jianmin, Lin, Yingbin, Kolosov, Oleg V., Huang, Zhigao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page
container_title Advanced functional materials
container_volume 31
creator Chen, Yue
Pan, Handian
Lin, Chun
Li, Jiaxin
Cai, Rongsheng
Haigh, Sarah J.
Zhao, Guiying
Zhang, Jianmin
Lin, Yingbin
Kolosov, Oleg V.
Huang, Zhigao
description Understanding the fundamentals of surface decoration effects in phase‐separation materials, such as lithium titanate (LTO), is important for optimizing the lithium‐ion battery (LIB) performance. LTO polycrystalline thin‐film electrodes with and without doped Al–ZnO (AZO) surface coating decoration are used as ideal models to gain insights into the mechanisms involved. Operando shear force modulation spectroscopy is used to observe for the first time the nanoscale dynamics of solid‐electrolyte‐interphase (SEI) formation on the electrode surfaces, confirming that the AZO coating is electrochemically converted into a stiff, homogenous SEI layer that protects the surface from the electrolyte‐induced decomposition. This AZO layer and its resultant artificial SEI‐layer have higher Li‐ion transport rates than the unmodified surface. These layers can reduce barriers to surface nucleation and facilitate rapid redistribution of lithium‐ions during the Li4Ti5O12 ⇄ Li7Ti5O12 phase separation, significantly inhabiting the orderly collective phase‐separation behavior (electrochemical oscillation) in the LTO electrode. The suppressed voltage oscillations indicate more homogeneous local exchange current density and de/intercalation states with the decorated electrodes, thereby extending their battery efficiency and long‐term cycling stability. This work highlights the ultimate importance of surface treatment for LIB materials for determining their interfacial chemistry and phase transition during the intercalation/deintercalation. To study the fundamentals of surface‐decoration effects in a phase‐separation electrochemical system, operando atomic force microscopy spectroscopy is used to observe the dynamics of solid‐electrolyte‐interphase formation on the electrode–electrolyte interfaces of lithium‐titanate‐oxide thin‐film electrodes with/without nanocoating layers; electrochemical measurements confirm that the surface‐decoration can modulate the interface‐reductive‐capability, and improve phase transition kinetics by inhibiting electrochemical oscillations.
doi_str_mv 10.1002/adfm.202105354
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2583438770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583438770</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2734-df69835f8772e6c46169d132c23529d8d99c0f54a16e5d5eae43bdd61f0db1bf3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZW2JdYofcR7LqrRQURQJisTOcv2grhwnxImq7vgEvpEvIVFRVzMjnXtn5gJwi9EEI0TuhTLlhCCCEaMsPgMjnOAkoohk56cef1yCqxB2COE0pfEI7GeVb5vKOes_4dK3ujFCWuHgq1adbG3l4bP1urUyQOEVfOvqutEhDPjcadlr5VaXVvaSIkjrnBhEAVoPVzZeW1ZgAtdb63-_fxbWlXDqK6XDNbgwwgV981_H4H0xX8-eolXxuJxNV1FN-vsiZZI8o8xkaUp0IuP-i1xhSiShjOQqU3kukWGxwIlmimmhY7pRKsEGqQ3eGDoGd0ffuqm-Oh1avqu6xvcrOWEZjWnvjHoqP1J76_SB140tRXPgGPEhWT4ky0_J8unD4uU00T-nF3FM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583438770</pqid></control><display><type>article</type><title>Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin‐Film Anodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Yue ; Pan, Handian ; Lin, Chun ; Li, Jiaxin ; Cai, Rongsheng ; Haigh, Sarah J. ; Zhao, Guiying ; Zhang, Jianmin ; Lin, Yingbin ; Kolosov, Oleg V. ; Huang, Zhigao</creator><creatorcontrib>Chen, Yue ; Pan, Handian ; Lin, Chun ; Li, Jiaxin ; Cai, Rongsheng ; Haigh, Sarah J. ; Zhao, Guiying ; Zhang, Jianmin ; Lin, Yingbin ; Kolosov, Oleg V. ; Huang, Zhigao</creatorcontrib><description>Understanding the fundamentals of surface decoration effects in phase‐separation materials, such as lithium titanate (LTO), is important for optimizing the lithium‐ion battery (LIB) performance. LTO polycrystalline thin‐film electrodes with and without doped Al–ZnO (AZO) surface coating decoration are used as ideal models to gain insights into the mechanisms involved. Operando shear force modulation spectroscopy is used to observe for the first time the nanoscale dynamics of solid‐electrolyte‐interphase (SEI) formation on the electrode surfaces, confirming that the AZO coating is electrochemically converted into a stiff, homogenous SEI layer that protects the surface from the electrolyte‐induced decomposition. This AZO layer and its resultant artificial SEI‐layer have higher Li‐ion transport rates than the unmodified surface. These layers can reduce barriers to surface nucleation and facilitate rapid redistribution of lithium‐ions during the Li4Ti5O12 ⇄ Li7Ti5O12 phase separation, significantly inhabiting the orderly collective phase‐separation behavior (electrochemical oscillation) in the LTO electrode. The suppressed voltage oscillations indicate more homogeneous local exchange current density and de/intercalation states with the decorated electrodes, thereby extending their battery efficiency and long‐term cycling stability. This work highlights the ultimate importance of surface treatment for LIB materials for determining their interfacial chemistry and phase transition during the intercalation/deintercalation. To study the fundamentals of surface‐decoration effects in a phase‐separation electrochemical system, operando atomic force microscopy spectroscopy is used to observe the dynamics of solid‐electrolyte‐interphase formation on the electrode–electrolyte interfaces of lithium‐titanate‐oxide thin‐film electrodes with/without nanocoating layers; electrochemical measurements confirm that the surface‐decoration can modulate the interface‐reductive‐capability, and improve phase transition kinetics by inhibiting electrochemical oscillations.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202105354</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anode effect ; Coated electrodes ; Decoration ; electrochemical oscillation behavior ; Electrolytes ; Intercalation ; Ion transport ; Lithium ; lithium battery performance ; lithium titanate thin‐film electrode ; Lithium-ion batteries ; Materials science ; Nucleation ; operando shear force spectroscopy ; Oscillations ; Phase separation ; Phase transitions ; Shear forces ; surface decoration engineering ; Surface treatment ; Zinc oxide</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (43), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5360-0219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202105354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202105354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids></links><search><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Pan, Handian</creatorcontrib><creatorcontrib>Lin, Chun</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Cai, Rongsheng</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Zhao, Guiying</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><creatorcontrib>Lin, Yingbin</creatorcontrib><creatorcontrib>Kolosov, Oleg V.</creatorcontrib><creatorcontrib>Huang, Zhigao</creatorcontrib><title>Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin‐Film Anodes</title><title>Advanced functional materials</title><description>Understanding the fundamentals of surface decoration effects in phase‐separation materials, such as lithium titanate (LTO), is important for optimizing the lithium‐ion battery (LIB) performance. LTO polycrystalline thin‐film electrodes with and without doped Al–ZnO (AZO) surface coating decoration are used as ideal models to gain insights into the mechanisms involved. Operando shear force modulation spectroscopy is used to observe for the first time the nanoscale dynamics of solid‐electrolyte‐interphase (SEI) formation on the electrode surfaces, confirming that the AZO coating is electrochemically converted into a stiff, homogenous SEI layer that protects the surface from the electrolyte‐induced decomposition. This AZO layer and its resultant artificial SEI‐layer have higher Li‐ion transport rates than the unmodified surface. These layers can reduce barriers to surface nucleation and facilitate rapid redistribution of lithium‐ions during the Li4Ti5O12 ⇄ Li7Ti5O12 phase separation, significantly inhabiting the orderly collective phase‐separation behavior (electrochemical oscillation) in the LTO electrode. The suppressed voltage oscillations indicate more homogeneous local exchange current density and de/intercalation states with the decorated electrodes, thereby extending their battery efficiency and long‐term cycling stability. This work highlights the ultimate importance of surface treatment for LIB materials for determining their interfacial chemistry and phase transition during the intercalation/deintercalation. To study the fundamentals of surface‐decoration effects in a phase‐separation electrochemical system, operando atomic force microscopy spectroscopy is used to observe the dynamics of solid‐electrolyte‐interphase formation on the electrode–electrolyte interfaces of lithium‐titanate‐oxide thin‐film electrodes with/without nanocoating layers; electrochemical measurements confirm that the surface‐decoration can modulate the interface‐reductive‐capability, and improve phase transition kinetics by inhibiting electrochemical oscillations.</description><subject>Anode effect</subject><subject>Coated electrodes</subject><subject>Decoration</subject><subject>electrochemical oscillation behavior</subject><subject>Electrolytes</subject><subject>Intercalation</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>lithium battery performance</subject><subject>lithium titanate thin‐film electrode</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Nucleation</subject><subject>operando shear force spectroscopy</subject><subject>Oscillations</subject><subject>Phase separation</subject><subject>Phase transitions</subject><subject>Shear forces</subject><subject>surface decoration engineering</subject><subject>Surface treatment</subject><subject>Zinc oxide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWwZW2JdYofcR7LqrRQURQJisTOcv2grhwnxImq7vgEvpEvIVFRVzMjnXtn5gJwi9EEI0TuhTLlhCCCEaMsPgMjnOAkoohk56cef1yCqxB2COE0pfEI7GeVb5vKOes_4dK3ujFCWuHgq1adbG3l4bP1urUyQOEVfOvqutEhDPjcadlr5VaXVvaSIkjrnBhEAVoPVzZeW1ZgAtdb63-_fxbWlXDqK6XDNbgwwgV981_H4H0xX8-eolXxuJxNV1FN-vsiZZI8o8xkaUp0IuP-i1xhSiShjOQqU3kukWGxwIlmimmhY7pRKsEGqQ3eGDoGd0ffuqm-Oh1avqu6xvcrOWEZjWnvjHoqP1J76_SB140tRXPgGPEhWT4ky0_J8unD4uU00T-nF3FM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chen, Yue</creator><creator>Pan, Handian</creator><creator>Lin, Chun</creator><creator>Li, Jiaxin</creator><creator>Cai, Rongsheng</creator><creator>Haigh, Sarah J.</creator><creator>Zhao, Guiying</creator><creator>Zhang, Jianmin</creator><creator>Lin, Yingbin</creator><creator>Kolosov, Oleg V.</creator><creator>Huang, Zhigao</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5360-0219</orcidid></search><sort><creationdate>20211001</creationdate><title>Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin‐Film Anodes</title><author>Chen, Yue ; Pan, Handian ; Lin, Chun ; Li, Jiaxin ; Cai, Rongsheng ; Haigh, Sarah J. ; Zhao, Guiying ; Zhang, Jianmin ; Lin, Yingbin ; Kolosov, Oleg V. ; Huang, Zhigao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2734-df69835f8772e6c46169d132c23529d8d99c0f54a16e5d5eae43bdd61f0db1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anode effect</topic><topic>Coated electrodes</topic><topic>Decoration</topic><topic>electrochemical oscillation behavior</topic><topic>Electrolytes</topic><topic>Intercalation</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>lithium battery performance</topic><topic>lithium titanate thin‐film electrode</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Nucleation</topic><topic>operando shear force spectroscopy</topic><topic>Oscillations</topic><topic>Phase separation</topic><topic>Phase transitions</topic><topic>Shear forces</topic><topic>surface decoration engineering</topic><topic>Surface treatment</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Pan, Handian</creatorcontrib><creatorcontrib>Lin, Chun</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Cai, Rongsheng</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Zhao, Guiying</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><creatorcontrib>Lin, Yingbin</creatorcontrib><creatorcontrib>Kolosov, Oleg V.</creatorcontrib><creatorcontrib>Huang, Zhigao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yue</au><au>Pan, Handian</au><au>Lin, Chun</au><au>Li, Jiaxin</au><au>Cai, Rongsheng</au><au>Haigh, Sarah J.</au><au>Zhao, Guiying</au><au>Zhang, Jianmin</au><au>Lin, Yingbin</au><au>Kolosov, Oleg V.</au><au>Huang, Zhigao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin‐Film Anodes</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>43</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Understanding the fundamentals of surface decoration effects in phase‐separation materials, such as lithium titanate (LTO), is important for optimizing the lithium‐ion battery (LIB) performance. LTO polycrystalline thin‐film electrodes with and without doped Al–ZnO (AZO) surface coating decoration are used as ideal models to gain insights into the mechanisms involved. Operando shear force modulation spectroscopy is used to observe for the first time the nanoscale dynamics of solid‐electrolyte‐interphase (SEI) formation on the electrode surfaces, confirming that the AZO coating is electrochemically converted into a stiff, homogenous SEI layer that protects the surface from the electrolyte‐induced decomposition. This AZO layer and its resultant artificial SEI‐layer have higher Li‐ion transport rates than the unmodified surface. These layers can reduce barriers to surface nucleation and facilitate rapid redistribution of lithium‐ions during the Li4Ti5O12 ⇄ Li7Ti5O12 phase separation, significantly inhabiting the orderly collective phase‐separation behavior (electrochemical oscillation) in the LTO electrode. The suppressed voltage oscillations indicate more homogeneous local exchange current density and de/intercalation states with the decorated electrodes, thereby extending their battery efficiency and long‐term cycling stability. This work highlights the ultimate importance of surface treatment for LIB materials for determining their interfacial chemistry and phase transition during the intercalation/deintercalation. To study the fundamentals of surface‐decoration effects in a phase‐separation electrochemical system, operando atomic force microscopy spectroscopy is used to observe the dynamics of solid‐electrolyte‐interphase formation on the electrode–electrolyte interfaces of lithium‐titanate‐oxide thin‐film electrodes with/without nanocoating layers; electrochemical measurements confirm that the surface‐decoration can modulate the interface‐reductive‐capability, and improve phase transition kinetics by inhibiting electrochemical oscillations.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202105354</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5360-0219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-10, Vol.31 (43), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2583438770
source Wiley Online Library Journals Frontfile Complete
subjects Anode effect
Coated electrodes
Decoration
electrochemical oscillation behavior
Electrolytes
Intercalation
Ion transport
Lithium
lithium battery performance
lithium titanate thin‐film electrode
Lithium-ion batteries
Materials science
Nucleation
operando shear force spectroscopy
Oscillations
Phase separation
Phase transitions
Shear forces
surface decoration engineering
Surface treatment
Zinc oxide
title Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin‐Film Anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Interfacial%20Reduction%20Kinetics%20and%20Suppressing%20Electrochemical%20Oscillations%20in%20Li4Ti5O12%20Thin%E2%80%90Film%20Anodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Yue&rft.date=2021-10-01&rft.volume=31&rft.issue=43&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202105354&rft_dat=%3Cproquest_wiley%3E2583438770%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583438770&rft_id=info:pmid/&rfr_iscdi=true