Band‐Like Charge Transport in Phytic Acid‐Doped Polyaniline Thin Films

We explore the charge transport properties of phytic acid (PA) doped polyaniline thin films prepared by the surfactant monolayer‐assisted interfacial synthesis (SMAIS). Structural and elemental analysis confirms the inclusion of PA in the thin films and reveals a progressive loss of crystallinity wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-10, Vol.31 (43), p.n/a
Hauptverfasser: Ballabio, Marco, Zhang, Tao, Chen, Chen, Zhang, Peng, Liao, Zhongquan, Hambsch, Mike, Mannsfeld, Stefan C. B., Zschech, Ehrenfried, Sirringhaus, Henning, Feng, Xinliang, Bonn, Mischa, Dong, Renhao, Cánovas, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page
container_title Advanced functional materials
container_volume 31
creator Ballabio, Marco
Zhang, Tao
Chen, Chen
Zhang, Peng
Liao, Zhongquan
Hambsch, Mike
Mannsfeld, Stefan C. B.
Zschech, Ehrenfried
Sirringhaus, Henning
Feng, Xinliang
Bonn, Mischa
Dong, Renhao
Cánovas, Enrique
description We explore the charge transport properties of phytic acid (PA) doped polyaniline thin films prepared by the surfactant monolayer‐assisted interfacial synthesis (SMAIS). Structural and elemental analysis confirms the inclusion of PA in the thin films and reveals a progressive loss of crystallinity with the increase of PA doping content. Charge transport properties are interrogated by time‐resolved terahertz (THz) spectroscopy. Notably, independently of doping content and hence crystallinity, the frequency‐resolved complex conductivity spectra in the THz region can be properly described by the Drude model, demonstrating band‐like charge transport in the samples and state‐of‐the‐art charge carrier mobilities of ≈1 cm2V−1s−1. A temperature‐dependent analysis for the conductivity further supports band‐like charge transport and suggest that charge carrier mobility is primarily limited by impurity scattering. This work highlights the potential of PA doped polyaniline for organic electronics. The interplay between conductivity and structure in polyaniline thin films doped by phytic acid is analyzed. While samples become less crystalline with doping content, even becoming amorphous, the conductivity for all samples is properly described using the Drude model. Temperature dependent analysis excludes the presence of thermally activated processes and suggest free charge carrier mobility being limited by impurity scattering.
doi_str_mv 10.1002/adfm.202105184
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583436381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583436381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-31d4ada1318fbd195748cc45cd03f2d25d548ddc6941c9de298e33d4b524034e3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EEqWwMkdiTvH5I3XG0tICKqJDkdgs13aoS5oEOxXKxk_gN_JLSFRURqa74b076SF0CXgAGJNrZbLtgGACmINgR6gHCSQxxUQcH3Z4OUVnIWwwhuGQsh56uFGF-f78mrs3G43Xyr_aaOlVEarS15ErosW6qZ2ORtp12KSsrIkWZd6owuWuaOF1C01dvg3n6CRTebAXv7OPnqe3y_FdPH-a3Y9H81gzQllMwTBlFFAQ2cpAyodMaM24NphmxBBuOBPG6CRloFNjSSospYatOGGYMkv76Gp_t_Ll-86GWm7KnS_al5JwQRlNqICWGuwp7csQvM1k5d1W-UYCll0v2fWSh16tkO6FD5fb5h9ajibTxz_3B3Igb3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583436381</pqid></control><display><type>article</type><title>Band‐Like Charge Transport in Phytic Acid‐Doped Polyaniline Thin Films</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ballabio, Marco ; Zhang, Tao ; Chen, Chen ; Zhang, Peng ; Liao, Zhongquan ; Hambsch, Mike ; Mannsfeld, Stefan C. B. ; Zschech, Ehrenfried ; Sirringhaus, Henning ; Feng, Xinliang ; Bonn, Mischa ; Dong, Renhao ; Cánovas, Enrique</creator><creatorcontrib>Ballabio, Marco ; Zhang, Tao ; Chen, Chen ; Zhang, Peng ; Liao, Zhongquan ; Hambsch, Mike ; Mannsfeld, Stefan C. B. ; Zschech, Ehrenfried ; Sirringhaus, Henning ; Feng, Xinliang ; Bonn, Mischa ; Dong, Renhao ; Cánovas, Enrique</creatorcontrib><description>We explore the charge transport properties of phytic acid (PA) doped polyaniline thin films prepared by the surfactant monolayer‐assisted interfacial synthesis (SMAIS). Structural and elemental analysis confirms the inclusion of PA in the thin films and reveals a progressive loss of crystallinity with the increase of PA doping content. Charge transport properties are interrogated by time‐resolved terahertz (THz) spectroscopy. Notably, independently of doping content and hence crystallinity, the frequency‐resolved complex conductivity spectra in the THz region can be properly described by the Drude model, demonstrating band‐like charge transport in the samples and state‐of‐the‐art charge carrier mobilities of ≈1 cm2V−1s−1. A temperature‐dependent analysis for the conductivity further supports band‐like charge transport and suggest that charge carrier mobility is primarily limited by impurity scattering. This work highlights the potential of PA doped polyaniline for organic electronics. The interplay between conductivity and structure in polyaniline thin films doped by phytic acid is analyzed. While samples become less crystalline with doping content, even becoming amorphous, the conductivity for all samples is properly described using the Drude model. Temperature dependent analysis excludes the presence of thermally activated processes and suggest free charge carrier mobility being limited by impurity scattering.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202105184</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>band‐like charge transport ; Carrier mobility ; Charge transport ; conducting polymers ; Crystal structure ; Crystallinity ; Crystals ; Current carriers ; Doping ; interfacial synthesis ; Materials science ; Phytic acid ; polyaniline ; Polyanilines ; Spectrum analysis ; Temperature dependence ; Thin films ; Transport properties</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (43), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-31d4ada1318fbd195748cc45cd03f2d25d548ddc6941c9de298e33d4b524034e3</citedby><cites>FETCH-LOGICAL-c4234-31d4ada1318fbd195748cc45cd03f2d25d548ddc6941c9de298e33d4b524034e3</cites><orcidid>0000-0003-1021-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202105184$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202105184$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ballabio, Marco</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Hambsch, Mike</creatorcontrib><creatorcontrib>Mannsfeld, Stefan C. B.</creatorcontrib><creatorcontrib>Zschech, Ehrenfried</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><creatorcontrib>Bonn, Mischa</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><creatorcontrib>Cánovas, Enrique</creatorcontrib><title>Band‐Like Charge Transport in Phytic Acid‐Doped Polyaniline Thin Films</title><title>Advanced functional materials</title><description>We explore the charge transport properties of phytic acid (PA) doped polyaniline thin films prepared by the surfactant monolayer‐assisted interfacial synthesis (SMAIS). Structural and elemental analysis confirms the inclusion of PA in the thin films and reveals a progressive loss of crystallinity with the increase of PA doping content. Charge transport properties are interrogated by time‐resolved terahertz (THz) spectroscopy. Notably, independently of doping content and hence crystallinity, the frequency‐resolved complex conductivity spectra in the THz region can be properly described by the Drude model, demonstrating band‐like charge transport in the samples and state‐of‐the‐art charge carrier mobilities of ≈1 cm2V−1s−1. A temperature‐dependent analysis for the conductivity further supports band‐like charge transport and suggest that charge carrier mobility is primarily limited by impurity scattering. This work highlights the potential of PA doped polyaniline for organic electronics. The interplay between conductivity and structure in polyaniline thin films doped by phytic acid is analyzed. While samples become less crystalline with doping content, even becoming amorphous, the conductivity for all samples is properly described using the Drude model. Temperature dependent analysis excludes the presence of thermally activated processes and suggest free charge carrier mobility being limited by impurity scattering.</description><subject>band‐like charge transport</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>conducting polymers</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Doping</subject><subject>interfacial synthesis</subject><subject>Materials science</subject><subject>Phytic acid</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Spectrum analysis</subject><subject>Temperature dependence</subject><subject>Thin films</subject><subject>Transport properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQQC0EEqWwMkdiTvH5I3XG0tICKqJDkdgs13aoS5oEOxXKxk_gN_JLSFRURqa74b076SF0CXgAGJNrZbLtgGACmINgR6gHCSQxxUQcH3Z4OUVnIWwwhuGQsh56uFGF-f78mrs3G43Xyr_aaOlVEarS15ErosW6qZ2ORtp12KSsrIkWZd6owuWuaOF1C01dvg3n6CRTebAXv7OPnqe3y_FdPH-a3Y9H81gzQllMwTBlFFAQ2cpAyodMaM24NphmxBBuOBPG6CRloFNjSSospYatOGGYMkv76Gp_t_Ll-86GWm7KnS_al5JwQRlNqICWGuwp7csQvM1k5d1W-UYCll0v2fWSh16tkO6FD5fb5h9ajibTxz_3B3Igb3I</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ballabio, Marco</creator><creator>Zhang, Tao</creator><creator>Chen, Chen</creator><creator>Zhang, Peng</creator><creator>Liao, Zhongquan</creator><creator>Hambsch, Mike</creator><creator>Mannsfeld, Stefan C. B.</creator><creator>Zschech, Ehrenfried</creator><creator>Sirringhaus, Henning</creator><creator>Feng, Xinliang</creator><creator>Bonn, Mischa</creator><creator>Dong, Renhao</creator><creator>Cánovas, Enrique</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1021-4929</orcidid></search><sort><creationdate>20211001</creationdate><title>Band‐Like Charge Transport in Phytic Acid‐Doped Polyaniline Thin Films</title><author>Ballabio, Marco ; Zhang, Tao ; Chen, Chen ; Zhang, Peng ; Liao, Zhongquan ; Hambsch, Mike ; Mannsfeld, Stefan C. B. ; Zschech, Ehrenfried ; Sirringhaus, Henning ; Feng, Xinliang ; Bonn, Mischa ; Dong, Renhao ; Cánovas, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-31d4ada1318fbd195748cc45cd03f2d25d548ddc6941c9de298e33d4b524034e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>band‐like charge transport</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>conducting polymers</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Doping</topic><topic>interfacial synthesis</topic><topic>Materials science</topic><topic>Phytic acid</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Spectrum analysis</topic><topic>Temperature dependence</topic><topic>Thin films</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballabio, Marco</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Liao, Zhongquan</creatorcontrib><creatorcontrib>Hambsch, Mike</creatorcontrib><creatorcontrib>Mannsfeld, Stefan C. B.</creatorcontrib><creatorcontrib>Zschech, Ehrenfried</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><creatorcontrib>Bonn, Mischa</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><creatorcontrib>Cánovas, Enrique</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballabio, Marco</au><au>Zhang, Tao</au><au>Chen, Chen</au><au>Zhang, Peng</au><au>Liao, Zhongquan</au><au>Hambsch, Mike</au><au>Mannsfeld, Stefan C. B.</au><au>Zschech, Ehrenfried</au><au>Sirringhaus, Henning</au><au>Feng, Xinliang</au><au>Bonn, Mischa</au><au>Dong, Renhao</au><au>Cánovas, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band‐Like Charge Transport in Phytic Acid‐Doped Polyaniline Thin Films</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>43</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>We explore the charge transport properties of phytic acid (PA) doped polyaniline thin films prepared by the surfactant monolayer‐assisted interfacial synthesis (SMAIS). Structural and elemental analysis confirms the inclusion of PA in the thin films and reveals a progressive loss of crystallinity with the increase of PA doping content. Charge transport properties are interrogated by time‐resolved terahertz (THz) spectroscopy. Notably, independently of doping content and hence crystallinity, the frequency‐resolved complex conductivity spectra in the THz region can be properly described by the Drude model, demonstrating band‐like charge transport in the samples and state‐of‐the‐art charge carrier mobilities of ≈1 cm2V−1s−1. A temperature‐dependent analysis for the conductivity further supports band‐like charge transport and suggest that charge carrier mobility is primarily limited by impurity scattering. This work highlights the potential of PA doped polyaniline for organic electronics. The interplay between conductivity and structure in polyaniline thin films doped by phytic acid is analyzed. While samples become less crystalline with doping content, even becoming amorphous, the conductivity for all samples is properly described using the Drude model. Temperature dependent analysis excludes the presence of thermally activated processes and suggest free charge carrier mobility being limited by impurity scattering.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202105184</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1021-4929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-10, Vol.31 (43), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2583436381
source Wiley Online Library Journals Frontfile Complete
subjects band‐like charge transport
Carrier mobility
Charge transport
conducting polymers
Crystal structure
Crystallinity
Crystals
Current carriers
Doping
interfacial synthesis
Materials science
Phytic acid
polyaniline
Polyanilines
Spectrum analysis
Temperature dependence
Thin films
Transport properties
title Band‐Like Charge Transport in Phytic Acid‐Doped Polyaniline Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%E2%80%90Like%20Charge%20Transport%20in%20Phytic%20Acid%E2%80%90Doped%20Polyaniline%20Thin%20Films&rft.jtitle=Advanced%20functional%20materials&rft.au=Ballabio,%20Marco&rft.date=2021-10-01&rft.volume=31&rft.issue=43&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202105184&rft_dat=%3Cproquest_cross%3E2583436381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583436381&rft_id=info:pmid/&rfr_iscdi=true