Understanding Thermal and A‐Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes

Lead halide perovskites (LHP) are rapidly emerging as efficient, low‐cost, solution‐processable scintillators for radiation detection. Carrier trapping is arguably the most critical limitation to the scintillation performance. Nonetheless, no clear picture of the trapping and detrapping mechanisms t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-10, Vol.31 (43), p.n/a
Hauptverfasser: Rodà, Carmelita, Fasoli, Mauro, Zaffalon, Matteo L., Cova, Francesca, Pinchetti, Valerio, Shamsi, Javad, Abdelhady, Ahmed L., Imran, Muhammad, Meinardi, Francesco, Manna, Liberato, Vedda, Anna, Brovelli, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page
container_title Advanced functional materials
container_volume 31
creator Rodà, Carmelita
Fasoli, Mauro
Zaffalon, Matteo L.
Cova, Francesca
Pinchetti, Valerio
Shamsi, Javad
Abdelhady, Ahmed L.
Imran, Muhammad
Meinardi, Francesco
Manna, Liberato
Vedda, Anna
Brovelli, Sergio
description Lead halide perovskites (LHP) are rapidly emerging as efficient, low‐cost, solution‐processable scintillators for radiation detection. Carrier trapping is arguably the most critical limitation to the scintillation performance. Nonetheless, no clear picture of the trapping and detrapping mechanisms to/from shallow and deep trap states involved in the scintillation process has been reported to date, as well as on the role of the material dimensionality. Here, this issue is addressed by performing, for the first time, a comprehensive study using radioluminescence and photoluminescence measurements side‐by‐side to thermally‐stimulated luminescence (TSL) and afterglow experiments on CsPbBr3 with increasing dimensionality, namely nanocubes, nanowires, nanosheets, and bulk crystals. All systems are found to be affected by shallow defects resulting in delayed intragap emission following detrapping via a‐thermal tunneling. TSL further reveals the existence of additional temperature‐activated detrapping pathways from deeper trap states, whose effect grows with the material dimensionality, becoming the dominant process in bulk crystals. These results highlight that, compared to massive solids where the suppression of both deep and shallow defects is critical, low dimensional nanostructures are more promising active materials for LHP scintillators, provided that their integration in functional devices meets efficient surface engineering. Lead halide perovskites are emerging as active materials for radiation detection. Through complementary spectroscopies, the carrier trapping/detrapping mechanisms affecting the scintillation performance of CsPbBr3 with increasing dimensionality, from nanocubes to nanowires, nanosheets, and bulk crystals, are elucidated. The nanostructures are dominated by slow detrapping via a‐thermal tunneling from shallow defects, whereas bulk crystals show a further thermal detrapping contribution.
doi_str_mv 10.1002/adfm.202104879
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583436336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583436336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-5e1ef6d5ae657800632e0fa94e2bc68beffb7bcbf123917b2eb0632e5ad580f03</originalsourceid><addsrcrecordid>eNqFUMtKA0EQHETBGL16HvC8cR77PIY8jBAx6Aa8LbM7PWbiPuLMJiE3_QO_0S9x12g8Cg1d1V3VDYXQJSU9Sgi7FlIVPUYYJW4YREeoQ33qO5yw8PiA6dMpOrN2SQgNAu520Pu8lGBsLUqpy2ccL8AUIscNxf3Pt49fHhuxWrWCmakysBYs1iWegpB4InItAc_AVBv7outmFVdbYaTFI6Ugq_UG8IOQWtS6KvEQ6nbWoMdsAQXYc3SiRG7h4qd30Xw8igcTZ3p_czvoT52Me0HkeEBB-dIT4HtBSIjPGRAlIhdYmvlhCkqlQZqlijIe0SBlkH5rPCG9kCjCu-hqf3dlqtc12DpZVmtTNi8T5oXc5T5vqot6e1VmKmsNqGRldCHMLqEkaWNO2piTQ8yNIdobtjqH3T_qpD8c3_15vwDZrISm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583436336</pqid></control><display><type>article</type><title>Understanding Thermal and A‐Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes</title><source>Access via Wiley Online Library</source><creator>Rodà, Carmelita ; Fasoli, Mauro ; Zaffalon, Matteo L. ; Cova, Francesca ; Pinchetti, Valerio ; Shamsi, Javad ; Abdelhady, Ahmed L. ; Imran, Muhammad ; Meinardi, Francesco ; Manna, Liberato ; Vedda, Anna ; Brovelli, Sergio</creator><creatorcontrib>Rodà, Carmelita ; Fasoli, Mauro ; Zaffalon, Matteo L. ; Cova, Francesca ; Pinchetti, Valerio ; Shamsi, Javad ; Abdelhady, Ahmed L. ; Imran, Muhammad ; Meinardi, Francesco ; Manna, Liberato ; Vedda, Anna ; Brovelli, Sergio</creatorcontrib><description>Lead halide perovskites (LHP) are rapidly emerging as efficient, low‐cost, solution‐processable scintillators for radiation detection. Carrier trapping is arguably the most critical limitation to the scintillation performance. Nonetheless, no clear picture of the trapping and detrapping mechanisms to/from shallow and deep trap states involved in the scintillation process has been reported to date, as well as on the role of the material dimensionality. Here, this issue is addressed by performing, for the first time, a comprehensive study using radioluminescence and photoluminescence measurements side‐by‐side to thermally‐stimulated luminescence (TSL) and afterglow experiments on CsPbBr3 with increasing dimensionality, namely nanocubes, nanowires, nanosheets, and bulk crystals. All systems are found to be affected by shallow defects resulting in delayed intragap emission following detrapping via a‐thermal tunneling. TSL further reveals the existence of additional temperature‐activated detrapping pathways from deeper trap states, whose effect grows with the material dimensionality, becoming the dominant process in bulk crystals. These results highlight that, compared to massive solids where the suppression of both deep and shallow defects is critical, low dimensional nanostructures are more promising active materials for LHP scintillators, provided that their integration in functional devices meets efficient surface engineering. Lead halide perovskites are emerging as active materials for radiation detection. Through complementary spectroscopies, the carrier trapping/detrapping mechanisms affecting the scintillation performance of CsPbBr3 with increasing dimensionality, from nanocubes to nanowires, nanosheets, and bulk crystals, are elucidated. The nanostructures are dominated by slow detrapping via a‐thermal tunneling from shallow defects, whereas bulk crystals show a further thermal detrapping contribution.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202104879</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Crystal defects ; CsPbBr 3 ; Lead compounds ; lead halide perovskites ; Materials science ; Metal halides ; nanocrystals ; Nanowires ; Perovskites ; Photoluminescence ; Radiation ; radiation detection ; radioluminescence ; Scintillation ; Scintillation counters ; thermally stimulated luminescence ; Trapping</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (43), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-5e1ef6d5ae657800632e0fa94e2bc68beffb7bcbf123917b2eb0632e5ad580f03</citedby><cites>FETCH-LOGICAL-c3579-5e1ef6d5ae657800632e0fa94e2bc68beffb7bcbf123917b2eb0632e5ad580f03</cites><orcidid>0000-0002-5993-855X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202104879$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202104879$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rodà, Carmelita</creatorcontrib><creatorcontrib>Fasoli, Mauro</creatorcontrib><creatorcontrib>Zaffalon, Matteo L.</creatorcontrib><creatorcontrib>Cova, Francesca</creatorcontrib><creatorcontrib>Pinchetti, Valerio</creatorcontrib><creatorcontrib>Shamsi, Javad</creatorcontrib><creatorcontrib>Abdelhady, Ahmed L.</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Meinardi, Francesco</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Vedda, Anna</creatorcontrib><creatorcontrib>Brovelli, Sergio</creatorcontrib><title>Understanding Thermal and A‐Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes</title><title>Advanced functional materials</title><description>Lead halide perovskites (LHP) are rapidly emerging as efficient, low‐cost, solution‐processable scintillators for radiation detection. Carrier trapping is arguably the most critical limitation to the scintillation performance. Nonetheless, no clear picture of the trapping and detrapping mechanisms to/from shallow and deep trap states involved in the scintillation process has been reported to date, as well as on the role of the material dimensionality. Here, this issue is addressed by performing, for the first time, a comprehensive study using radioluminescence and photoluminescence measurements side‐by‐side to thermally‐stimulated luminescence (TSL) and afterglow experiments on CsPbBr3 with increasing dimensionality, namely nanocubes, nanowires, nanosheets, and bulk crystals. All systems are found to be affected by shallow defects resulting in delayed intragap emission following detrapping via a‐thermal tunneling. TSL further reveals the existence of additional temperature‐activated detrapping pathways from deeper trap states, whose effect grows with the material dimensionality, becoming the dominant process in bulk crystals. These results highlight that, compared to massive solids where the suppression of both deep and shallow defects is critical, low dimensional nanostructures are more promising active materials for LHP scintillators, provided that their integration in functional devices meets efficient surface engineering. Lead halide perovskites are emerging as active materials for radiation detection. Through complementary spectroscopies, the carrier trapping/detrapping mechanisms affecting the scintillation performance of CsPbBr3 with increasing dimensionality, from nanocubes to nanowires, nanosheets, and bulk crystals, are elucidated. The nanostructures are dominated by slow detrapping via a‐thermal tunneling from shallow defects, whereas bulk crystals show a further thermal detrapping contribution.</description><subject>Crystal defects</subject><subject>CsPbBr 3</subject><subject>Lead compounds</subject><subject>lead halide perovskites</subject><subject>Materials science</subject><subject>Metal halides</subject><subject>nanocrystals</subject><subject>Nanowires</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Radiation</subject><subject>radiation detection</subject><subject>radioluminescence</subject><subject>Scintillation</subject><subject>Scintillation counters</subject><subject>thermally stimulated luminescence</subject><subject>Trapping</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUMtKA0EQHETBGL16HvC8cR77PIY8jBAx6Aa8LbM7PWbiPuLMJiE3_QO_0S9x12g8Cg1d1V3VDYXQJSU9Sgi7FlIVPUYYJW4YREeoQ33qO5yw8PiA6dMpOrN2SQgNAu520Pu8lGBsLUqpy2ccL8AUIscNxf3Pt49fHhuxWrWCmakysBYs1iWegpB4InItAc_AVBv7outmFVdbYaTFI6Ugq_UG8IOQWtS6KvEQ6nbWoMdsAQXYc3SiRG7h4qd30Xw8igcTZ3p_czvoT52Me0HkeEBB-dIT4HtBSIjPGRAlIhdYmvlhCkqlQZqlijIe0SBlkH5rPCG9kCjCu-hqf3dlqtc12DpZVmtTNi8T5oXc5T5vqot6e1VmKmsNqGRldCHMLqEkaWNO2piTQ8yNIdobtjqH3T_qpD8c3_15vwDZrISm</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Rodà, Carmelita</creator><creator>Fasoli, Mauro</creator><creator>Zaffalon, Matteo L.</creator><creator>Cova, Francesca</creator><creator>Pinchetti, Valerio</creator><creator>Shamsi, Javad</creator><creator>Abdelhady, Ahmed L.</creator><creator>Imran, Muhammad</creator><creator>Meinardi, Francesco</creator><creator>Manna, Liberato</creator><creator>Vedda, Anna</creator><creator>Brovelli, Sergio</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5993-855X</orcidid></search><sort><creationdate>20211001</creationdate><title>Understanding Thermal and A‐Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes</title><author>Rodà, Carmelita ; Fasoli, Mauro ; Zaffalon, Matteo L. ; Cova, Francesca ; Pinchetti, Valerio ; Shamsi, Javad ; Abdelhady, Ahmed L. ; Imran, Muhammad ; Meinardi, Francesco ; Manna, Liberato ; Vedda, Anna ; Brovelli, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-5e1ef6d5ae657800632e0fa94e2bc68beffb7bcbf123917b2eb0632e5ad580f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal defects</topic><topic>CsPbBr 3</topic><topic>Lead compounds</topic><topic>lead halide perovskites</topic><topic>Materials science</topic><topic>Metal halides</topic><topic>nanocrystals</topic><topic>Nanowires</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Radiation</topic><topic>radiation detection</topic><topic>radioluminescence</topic><topic>Scintillation</topic><topic>Scintillation counters</topic><topic>thermally stimulated luminescence</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodà, Carmelita</creatorcontrib><creatorcontrib>Fasoli, Mauro</creatorcontrib><creatorcontrib>Zaffalon, Matteo L.</creatorcontrib><creatorcontrib>Cova, Francesca</creatorcontrib><creatorcontrib>Pinchetti, Valerio</creatorcontrib><creatorcontrib>Shamsi, Javad</creatorcontrib><creatorcontrib>Abdelhady, Ahmed L.</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Meinardi, Francesco</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Vedda, Anna</creatorcontrib><creatorcontrib>Brovelli, Sergio</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodà, Carmelita</au><au>Fasoli, Mauro</au><au>Zaffalon, Matteo L.</au><au>Cova, Francesca</au><au>Pinchetti, Valerio</au><au>Shamsi, Javad</au><au>Abdelhady, Ahmed L.</au><au>Imran, Muhammad</au><au>Meinardi, Francesco</au><au>Manna, Liberato</au><au>Vedda, Anna</au><au>Brovelli, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Thermal and A‐Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>43</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Lead halide perovskites (LHP) are rapidly emerging as efficient, low‐cost, solution‐processable scintillators for radiation detection. Carrier trapping is arguably the most critical limitation to the scintillation performance. Nonetheless, no clear picture of the trapping and detrapping mechanisms to/from shallow and deep trap states involved in the scintillation process has been reported to date, as well as on the role of the material dimensionality. Here, this issue is addressed by performing, for the first time, a comprehensive study using radioluminescence and photoluminescence measurements side‐by‐side to thermally‐stimulated luminescence (TSL) and afterglow experiments on CsPbBr3 with increasing dimensionality, namely nanocubes, nanowires, nanosheets, and bulk crystals. All systems are found to be affected by shallow defects resulting in delayed intragap emission following detrapping via a‐thermal tunneling. TSL further reveals the existence of additional temperature‐activated detrapping pathways from deeper trap states, whose effect grows with the material dimensionality, becoming the dominant process in bulk crystals. These results highlight that, compared to massive solids where the suppression of both deep and shallow defects is critical, low dimensional nanostructures are more promising active materials for LHP scintillators, provided that their integration in functional devices meets efficient surface engineering. Lead halide perovskites are emerging as active materials for radiation detection. Through complementary spectroscopies, the carrier trapping/detrapping mechanisms affecting the scintillation performance of CsPbBr3 with increasing dimensionality, from nanocubes to nanowires, nanosheets, and bulk crystals, are elucidated. The nanostructures are dominated by slow detrapping via a‐thermal tunneling from shallow defects, whereas bulk crystals show a further thermal detrapping contribution.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202104879</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5993-855X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-10, Vol.31 (43), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2583436336
source Access via Wiley Online Library
subjects Crystal defects
CsPbBr 3
Lead compounds
lead halide perovskites
Materials science
Metal halides
nanocrystals
Nanowires
Perovskites
Photoluminescence
Radiation
radiation detection
radioluminescence
Scintillation
Scintillation counters
thermally stimulated luminescence
Trapping
title Understanding Thermal and A‐Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Thermal%20and%20A%E2%80%90Thermal%20Trapping%20Processes%20in%20Lead%20Halide%20Perovskites%20Towards%20Effective%20Radiation%20Detection%20Schemes&rft.jtitle=Advanced%20functional%20materials&rft.au=Rod%C3%A0,%20Carmelita&rft.date=2021-10-01&rft.volume=31&rft.issue=43&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202104879&rft_dat=%3Cproquest_cross%3E2583436336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583436336&rft_id=info:pmid/&rfr_iscdi=true