A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor

The magnetite Fe3O4 nanoparticles were synthesized by using chemical co-precipitation method and these nanoparticles were successfully coated by polyethylene glycol (PEG) with variation concentrations of PEG. The magnetite Fe3O4 nanoparticles used as a bimolecular label (nano-tags), exhibiting a sof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2020-05, Vol.7 (5), p.056103
Hauptverfasser: Antarnusa, Ganesha, Suharyadi, Edi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 056103
container_title Materials research express
container_volume 7
creator Antarnusa, Ganesha
Suharyadi, Edi
description The magnetite Fe3O4 nanoparticles were synthesized by using chemical co-precipitation method and these nanoparticles were successfully coated by polyethylene glycol (PEG) with variation concentrations of PEG. The magnetite Fe3O4 nanoparticles used as a bimolecular label (nano-tags), exhibiting a soft magnetic behavior with magnetization (Ms) of 77.16 emu g−1 and coercivity (Hc) of 50 Oe respectively. The polyethylene glycol (PEG) was used as a biocompatible polymer. The x-ray diffraction (XRD) patterns of the Fe3O4 showed that Fe3O4 was well crystallized. It also confirmed the existence of invers spinel. The diffraction peak of 35.4° was used to calculate the crystallite size. The estimation of Fe3O4 average crystallite size is 12 nm, while the PEG-coated Fe3O4 nanoparticles is 8.6 nm. The transmission electron microscopy (TEM) images of Fe3O4 showed that the morphology of magnetite Fe3O4 nanoparticle is spherical in shape with uniform grain size and good dispersibility despite the agglomeration it found in some place. The addition of PEG can decrease the agglomeration and reduce the particle size. The existence of PEG layer on Fe3O4 was confirmed by Fourier transform infrared (FTIR) spectroscopy. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization (Ms) of Fe3O4 nanoparticles decreased from 77.16 to 37.15 emu g−1 with the increase of PEG weight from 0% to 50%. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biosensor applications.
doi_str_mv 10.1088/2053-1591/ab8bef
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2583419814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c3fb0965a3c420d84c921cea0f9023b</doaj_id><sourcerecordid>2583419814</sourcerecordid><originalsourceid>FETCH-LOGICAL-d359t-d3b1574c98a3f3c8126eeffb0f3ed91e6e3bbd7ad32034a94d8fb1d9674857703</originalsourceid><addsrcrecordid>eNptkc9rFTEQxxdBsNTePQYEUfDZ_NjsJsdS2loo1IOewySZvJfHvmRNUnDv_cPd5yt68TIDkw-fmfDtuneMfmFUqUtOpdgwqdklWGUxvOrO_o7edBe17imlfNRC8uGse74idUlthzVWkgOZ87Rg2y0TJiTbaXF5Ih-_3dx92rgMDT05wDZhiw3JLYrHniRIeYbSopuwEkierLJYiNtBAdewxLq-VRJyIZh2kBweMLXjLhtzxVRzedu9DjBVvHjp592P25vv1183D49399dXDxsvpG5rtUyOvdMKRBBOMT4ghmBpEOg1wwGFtX4ELzgVPejeq2CZ18PYKzmOVJx39yevz7A3c4kHKIvJEM2fQS5b8_ITI51YxXqQIFzPqVfrWs4cAg2acmFX1_uTay755xPWZvb5qaT1fMOlEj3TivUr9flExTz_Axg1x6jMMRdzzMWcolrxD__BD-WXGY00VA6MCjP7IH4DdTiX9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583419814</pqid></control><display><type>article</type><title>A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Antarnusa, Ganesha ; Suharyadi, Edi</creator><creatorcontrib>Antarnusa, Ganesha ; Suharyadi, Edi</creatorcontrib><description>The magnetite Fe3O4 nanoparticles were synthesized by using chemical co-precipitation method and these nanoparticles were successfully coated by polyethylene glycol (PEG) with variation concentrations of PEG. The magnetite Fe3O4 nanoparticles used as a bimolecular label (nano-tags), exhibiting a soft magnetic behavior with magnetization (Ms) of 77.16 emu g−1 and coercivity (Hc) of 50 Oe respectively. The polyethylene glycol (PEG) was used as a biocompatible polymer. The x-ray diffraction (XRD) patterns of the Fe3O4 showed that Fe3O4 was well crystallized. It also confirmed the existence of invers spinel. The diffraction peak of 35.4° was used to calculate the crystallite size. The estimation of Fe3O4 average crystallite size is 12 nm, while the PEG-coated Fe3O4 nanoparticles is 8.6 nm. The transmission electron microscopy (TEM) images of Fe3O4 showed that the morphology of magnetite Fe3O4 nanoparticle is spherical in shape with uniform grain size and good dispersibility despite the agglomeration it found in some place. The addition of PEG can decrease the agglomeration and reduce the particle size. The existence of PEG layer on Fe3O4 was confirmed by Fourier transform infrared (FTIR) spectroscopy. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization (Ms) of Fe3O4 nanoparticles decreased from 77.16 to 37.15 emu g−1 with the increase of PEG weight from 0% to 50%. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biosensor applications.</description><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab8bef</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Agglomeration ; Biocompatibility ; biosensor applications ; Biosensors ; Chemical precipitation ; Chemical synthesis ; co-precipitation method ; Coercivity ; Crystallites ; Crystallization ; Diffraction patterns ; Fourier transforms ; Grain size ; Image transmission ; Iron oxides ; Magnetic properties ; Magnetic saturation ; Magnetite ; magnetite Fe ; magnetite Fe3O4 ; Magnetization ; Magnetometers ; Morphology ; Nanoparticles ; Polyethylene glycol ; polyethylene glycol (PEG)</subject><ispartof>Materials research express, 2020-05, Vol.7 (5), p.056103</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3592-9333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab8bef/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2101,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Antarnusa, Ganesha</creatorcontrib><creatorcontrib>Suharyadi, Edi</creatorcontrib><title>A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>The magnetite Fe3O4 nanoparticles were synthesized by using chemical co-precipitation method and these nanoparticles were successfully coated by polyethylene glycol (PEG) with variation concentrations of PEG. The magnetite Fe3O4 nanoparticles used as a bimolecular label (nano-tags), exhibiting a soft magnetic behavior with magnetization (Ms) of 77.16 emu g−1 and coercivity (Hc) of 50 Oe respectively. The polyethylene glycol (PEG) was used as a biocompatible polymer. The x-ray diffraction (XRD) patterns of the Fe3O4 showed that Fe3O4 was well crystallized. It also confirmed the existence of invers spinel. The diffraction peak of 35.4° was used to calculate the crystallite size. The estimation of Fe3O4 average crystallite size is 12 nm, while the PEG-coated Fe3O4 nanoparticles is 8.6 nm. The transmission electron microscopy (TEM) images of Fe3O4 showed that the morphology of magnetite Fe3O4 nanoparticle is spherical in shape with uniform grain size and good dispersibility despite the agglomeration it found in some place. The addition of PEG can decrease the agglomeration and reduce the particle size. The existence of PEG layer on Fe3O4 was confirmed by Fourier transform infrared (FTIR) spectroscopy. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization (Ms) of Fe3O4 nanoparticles decreased from 77.16 to 37.15 emu g−1 with the increase of PEG weight from 0% to 50%. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biosensor applications.</description><subject>Agglomeration</subject><subject>Biocompatibility</subject><subject>biosensor applications</subject><subject>Biosensors</subject><subject>Chemical precipitation</subject><subject>Chemical synthesis</subject><subject>co-precipitation method</subject><subject>Coercivity</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Diffraction patterns</subject><subject>Fourier transforms</subject><subject>Grain size</subject><subject>Image transmission</subject><subject>Iron oxides</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetite</subject><subject>magnetite Fe</subject><subject>magnetite Fe3O4</subject><subject>Magnetization</subject><subject>Magnetometers</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Polyethylene glycol</subject><subject>polyethylene glycol (PEG)</subject><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9rFTEQxxdBsNTePQYEUfDZ_NjsJsdS2loo1IOewySZvJfHvmRNUnDv_cPd5yt68TIDkw-fmfDtuneMfmFUqUtOpdgwqdklWGUxvOrO_o7edBe17imlfNRC8uGse74idUlthzVWkgOZ87Rg2y0TJiTbaXF5Ih-_3dx92rgMDT05wDZhiw3JLYrHniRIeYbSopuwEkierLJYiNtBAdewxLq-VRJyIZh2kBweMLXjLhtzxVRzedu9DjBVvHjp592P25vv1183D49399dXDxsvpG5rtUyOvdMKRBBOMT4ghmBpEOg1wwGFtX4ELzgVPejeq2CZ18PYKzmOVJx39yevz7A3c4kHKIvJEM2fQS5b8_ITI51YxXqQIFzPqVfrWs4cAg2acmFX1_uTay755xPWZvb5qaT1fMOlEj3TivUr9flExTz_Axg1x6jMMRdzzMWcolrxD__BD-WXGY00VA6MCjP7IH4DdTiX9w</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Antarnusa, Ganesha</creator><creator>Suharyadi, Edi</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3592-9333</orcidid></search><sort><creationdate>20200501</creationdate><title>A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor</title><author>Antarnusa, Ganesha ; Suharyadi, Edi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d359t-d3b1574c98a3f3c8126eeffb0f3ed91e6e3bbd7ad32034a94d8fb1d9674857703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Biocompatibility</topic><topic>biosensor applications</topic><topic>Biosensors</topic><topic>Chemical precipitation</topic><topic>Chemical synthesis</topic><topic>co-precipitation method</topic><topic>Coercivity</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Diffraction patterns</topic><topic>Fourier transforms</topic><topic>Grain size</topic><topic>Image transmission</topic><topic>Iron oxides</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetite</topic><topic>magnetite Fe</topic><topic>magnetite Fe3O4</topic><topic>Magnetization</topic><topic>Magnetometers</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Polyethylene glycol</topic><topic>polyethylene glycol (PEG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antarnusa, Ganesha</creatorcontrib><creatorcontrib>Suharyadi, Edi</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antarnusa, Ganesha</au><au>Suharyadi, Edi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>7</volume><issue>5</issue><spage>056103</spage><pages>056103-</pages><eissn>2053-1591</eissn><abstract>The magnetite Fe3O4 nanoparticles were synthesized by using chemical co-precipitation method and these nanoparticles were successfully coated by polyethylene glycol (PEG) with variation concentrations of PEG. The magnetite Fe3O4 nanoparticles used as a bimolecular label (nano-tags), exhibiting a soft magnetic behavior with magnetization (Ms) of 77.16 emu g−1 and coercivity (Hc) of 50 Oe respectively. The polyethylene glycol (PEG) was used as a biocompatible polymer. The x-ray diffraction (XRD) patterns of the Fe3O4 showed that Fe3O4 was well crystallized. It also confirmed the existence of invers spinel. The diffraction peak of 35.4° was used to calculate the crystallite size. The estimation of Fe3O4 average crystallite size is 12 nm, while the PEG-coated Fe3O4 nanoparticles is 8.6 nm. The transmission electron microscopy (TEM) images of Fe3O4 showed that the morphology of magnetite Fe3O4 nanoparticle is spherical in shape with uniform grain size and good dispersibility despite the agglomeration it found in some place. The addition of PEG can decrease the agglomeration and reduce the particle size. The existence of PEG layer on Fe3O4 was confirmed by Fourier transform infrared (FTIR) spectroscopy. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization (Ms) of Fe3O4 nanoparticles decreased from 77.16 to 37.15 emu g−1 with the increase of PEG weight from 0% to 50%. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biosensor applications.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab8bef</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3592-9333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2053-1591
ispartof Materials research express, 2020-05, Vol.7 (5), p.056103
issn 2053-1591
language eng
recordid cdi_proquest_journals_2583419814
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Agglomeration
Biocompatibility
biosensor applications
Biosensors
Chemical precipitation
Chemical synthesis
co-precipitation method
Coercivity
Crystallites
Crystallization
Diffraction patterns
Fourier transforms
Grain size
Image transmission
Iron oxides
Magnetic properties
Magnetic saturation
Magnetite
magnetite Fe
magnetite Fe3O4
Magnetization
Magnetometers
Morphology
Nanoparticles
Polyethylene glycol
polyethylene glycol (PEG)
title A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synthesis%20of%20polyethylene%20glycol%20(PEG)-coated%20magnetite%20Fe3O4%20nanoparticles%20and%20their%20characteristics%20for%20enhancement%20of%20biosensor&rft.jtitle=Materials%20research%20express&rft.au=Antarnusa,%20Ganesha&rft.date=2020-05-01&rft.volume=7&rft.issue=5&rft.spage=056103&rft.pages=056103-&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab8bef&rft_dat=%3Cproquest_doaj_%3E2583419814%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583419814&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5c3fb0965a3c420d84c921cea0f9023b&rfr_iscdi=true