Submerged solar energy harvesting using ferroelectric Ti‐doped BFO‐based heterojunction solar cells
Summary Herein, ferroelectric Ti‐doped BiFeO3 (BFTO) heterojunction photovoltaic (PV) cells are realized for underwater PV applications. In the heterostructure, NiO functions as a transparent wide‐bandgap (3.2 eV) hole transport layer (HTL), whereas BFTO is the visible energy harvester and the highl...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2021-11, Vol.45 (14), p.20400-20412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20412 |
---|---|
container_issue | 14 |
container_start_page | 20400 |
container_title | International journal of energy research |
container_volume | 45 |
creator | Renuka, H. Enaganti, Prasanth K. Venkataraman, B. Harihara Ramaswamy, Kannan Kundu, Souvik Goel, Sanket |
description | Summary
Herein, ferroelectric Ti‐doped BiFeO3 (BFTO) heterojunction photovoltaic (PV) cells are realized for underwater PV applications. In the heterostructure, NiO functions as a transparent wide‐bandgap (3.2 eV) hole transport layer (HTL), whereas BFTO is the visible energy harvester and the highly conductive WS2 behaves as the electron transport layer (ETL). The multijunction PV device with a cell area of 1cm2 revealed a current density (JSC) and an open‐circuit voltage (VOC) of 1.90 mA/cm2 and 1.20 V, respectively, under ambient conditions (before submerging into water). Subsequently, the polydimethylsiloxane (PDMS)‐encapsulated Ag/NiO/BFTO/WS2/ITO PV device was investigated for underwater solar energy harvesting in a shallow tank. For a comparative analysis, the mono‐junction NiO/BFTO and BFTO/WS2 PVs were also evaluated. The results indicated a steady decrease in the efficacy and power density of the cell with depth, and the heterojunction PV has outperformed the single‐junction PVs. As there are spectral variations with increase in depth, the heterostructure seem to have the potential to absorb the overall spectrum as NiO being transparent transmits high energy UV radiations into the device, while BFTO and WS2 layers absorb the visible and NIR spectrum. Therefore, the device though submerged can capture the solar energy efficiently with minimal losses in terms of spectrum and function efficiently. These results establish that the ferroelectric nano‐heterostructured PV devices can be utilized as a power generating source for various low‐power marine‐based sensing applications. |
doi_str_mv | 10.1002/er.7125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583338890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583338890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3225-7a1e60bf0596107dfecfebef1d5c21ded11f4098e5b996a512101b9ef58da6ef3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmMgXqESBw6oI06XtjnCtAES0iQY0m5Rmjpbp64ZSQvajUfgGXkSMrYrF_u3_Pm3bEIugQ6AUnaLbpAB40ekB1SIGGA4PyY9mqRJLGg2PyVn3q8oDT3IemTx2hVrdAssI29r5SJsQrWNlsp9oG-rZhF1fhcNOmexRt26Skez6ufru7SbMHY_mQZdKB_0Elt0dtU1uq1sc3DUWNf-nJwYVXu8OOQ-eZuMZ6PH-Hn68DS6e451whiPMwWY0sJQLlKgWWlQGyzQQMk1gxJLADOkIkdeCJEqDgwoFAINz0uVokn65Grvu3H2vQsXyJXtXBNWSsbzJEnyXNBAXe8p7az3Do3cuGqt3FYClbsvSnRy98VA3uzJz6rG7X-YHL_80b9DGnZK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583338890</pqid></control><display><type>article</type><title>Submerged solar energy harvesting using ferroelectric Ti‐doped BFO‐based heterojunction solar cells</title><source>Wiley Online Library All Journals</source><creator>Renuka, H. ; Enaganti, Prasanth K. ; Venkataraman, B. Harihara ; Ramaswamy, Kannan ; Kundu, Souvik ; Goel, Sanket</creator><creatorcontrib>Renuka, H. ; Enaganti, Prasanth K. ; Venkataraman, B. Harihara ; Ramaswamy, Kannan ; Kundu, Souvik ; Goel, Sanket</creatorcontrib><description>Summary
Herein, ferroelectric Ti‐doped BiFeO3 (BFTO) heterojunction photovoltaic (PV) cells are realized for underwater PV applications. In the heterostructure, NiO functions as a transparent wide‐bandgap (3.2 eV) hole transport layer (HTL), whereas BFTO is the visible energy harvester and the highly conductive WS2 behaves as the electron transport layer (ETL). The multijunction PV device with a cell area of 1cm2 revealed a current density (JSC) and an open‐circuit voltage (VOC) of 1.90 mA/cm2 and 1.20 V, respectively, under ambient conditions (before submerging into water). Subsequently, the polydimethylsiloxane (PDMS)‐encapsulated Ag/NiO/BFTO/WS2/ITO PV device was investigated for underwater solar energy harvesting in a shallow tank. For a comparative analysis, the mono‐junction NiO/BFTO and BFTO/WS2 PVs were also evaluated. The results indicated a steady decrease in the efficacy and power density of the cell with depth, and the heterojunction PV has outperformed the single‐junction PVs. As there are spectral variations with increase in depth, the heterostructure seem to have the potential to absorb the overall spectrum as NiO being transparent transmits high energy UV radiations into the device, while BFTO and WS2 layers absorb the visible and NIR spectrum. Therefore, the device though submerged can capture the solar energy efficiently with minimal losses in terms of spectrum and function efficiently. These results establish that the ferroelectric nano‐heterostructured PV devices can be utilized as a power generating source for various low‐power marine‐based sensing applications.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.7125</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Bismuth compounds ; Circuits ; Comparative analysis ; Current density ; Electron transport ; electron transport layer ; electron‐hole recombination ; Energy ; Energy harvesting ; Ferroelectric materials ; Ferroelectricity ; heterojunction ; Heterojunctions ; Heterostructures ; hole transport layer ; Nickel oxides ; Photovoltaic cells ; Photovoltaics ; Polydimethylsiloxane ; Solar cells ; Solar energy ; Transport ; Underwater ; underwater solar energy harvesting</subject><ispartof>International journal of energy research, 2021-11, Vol.45 (14), p.20400-20412</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3225-7a1e60bf0596107dfecfebef1d5c21ded11f4098e5b996a512101b9ef58da6ef3</citedby><cites>FETCH-LOGICAL-c3225-7a1e60bf0596107dfecfebef1d5c21ded11f4098e5b996a512101b9ef58da6ef3</cites><orcidid>0000-0002-9739-4178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.7125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.7125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Renuka, H.</creatorcontrib><creatorcontrib>Enaganti, Prasanth K.</creatorcontrib><creatorcontrib>Venkataraman, B. Harihara</creatorcontrib><creatorcontrib>Ramaswamy, Kannan</creatorcontrib><creatorcontrib>Kundu, Souvik</creatorcontrib><creatorcontrib>Goel, Sanket</creatorcontrib><title>Submerged solar energy harvesting using ferroelectric Ti‐doped BFO‐based heterojunction solar cells</title><title>International journal of energy research</title><description>Summary
Herein, ferroelectric Ti‐doped BiFeO3 (BFTO) heterojunction photovoltaic (PV) cells are realized for underwater PV applications. In the heterostructure, NiO functions as a transparent wide‐bandgap (3.2 eV) hole transport layer (HTL), whereas BFTO is the visible energy harvester and the highly conductive WS2 behaves as the electron transport layer (ETL). The multijunction PV device with a cell area of 1cm2 revealed a current density (JSC) and an open‐circuit voltage (VOC) of 1.90 mA/cm2 and 1.20 V, respectively, under ambient conditions (before submerging into water). Subsequently, the polydimethylsiloxane (PDMS)‐encapsulated Ag/NiO/BFTO/WS2/ITO PV device was investigated for underwater solar energy harvesting in a shallow tank. For a comparative analysis, the mono‐junction NiO/BFTO and BFTO/WS2 PVs were also evaluated. The results indicated a steady decrease in the efficacy and power density of the cell with depth, and the heterojunction PV has outperformed the single‐junction PVs. As there are spectral variations with increase in depth, the heterostructure seem to have the potential to absorb the overall spectrum as NiO being transparent transmits high energy UV radiations into the device, while BFTO and WS2 layers absorb the visible and NIR spectrum. Therefore, the device though submerged can capture the solar energy efficiently with minimal losses in terms of spectrum and function efficiently. These results establish that the ferroelectric nano‐heterostructured PV devices can be utilized as a power generating source for various low‐power marine‐based sensing applications.</description><subject>Bismuth compounds</subject><subject>Circuits</subject><subject>Comparative analysis</subject><subject>Current density</subject><subject>Electron transport</subject><subject>electron transport layer</subject><subject>electron‐hole recombination</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>hole transport layer</subject><subject>Nickel oxides</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polydimethylsiloxane</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Transport</subject><subject>Underwater</subject><subject>underwater solar energy harvesting</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmMgXqESBw6oI06XtjnCtAES0iQY0m5Rmjpbp64ZSQvajUfgGXkSMrYrF_u3_Pm3bEIugQ6AUnaLbpAB40ekB1SIGGA4PyY9mqRJLGg2PyVn3q8oDT3IemTx2hVrdAssI29r5SJsQrWNlsp9oG-rZhF1fhcNOmexRt26Skez6ufru7SbMHY_mQZdKB_0Elt0dtU1uq1sc3DUWNf-nJwYVXu8OOQ-eZuMZ6PH-Hn68DS6e451whiPMwWY0sJQLlKgWWlQGyzQQMk1gxJLADOkIkdeCJEqDgwoFAINz0uVokn65Grvu3H2vQsXyJXtXBNWSsbzJEnyXNBAXe8p7az3Do3cuGqt3FYClbsvSnRy98VA3uzJz6rG7X-YHL_80b9DGnZK</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Renuka, H.</creator><creator>Enaganti, Prasanth K.</creator><creator>Venkataraman, B. Harihara</creator><creator>Ramaswamy, Kannan</creator><creator>Kundu, Souvik</creator><creator>Goel, Sanket</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9739-4178</orcidid></search><sort><creationdate>202111</creationdate><title>Submerged solar energy harvesting using ferroelectric Ti‐doped BFO‐based heterojunction solar cells</title><author>Renuka, H. ; Enaganti, Prasanth K. ; Venkataraman, B. Harihara ; Ramaswamy, Kannan ; Kundu, Souvik ; Goel, Sanket</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3225-7a1e60bf0596107dfecfebef1d5c21ded11f4098e5b996a512101b9ef58da6ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth compounds</topic><topic>Circuits</topic><topic>Comparative analysis</topic><topic>Current density</topic><topic>Electron transport</topic><topic>electron transport layer</topic><topic>electron‐hole recombination</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>hole transport layer</topic><topic>Nickel oxides</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polydimethylsiloxane</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Transport</topic><topic>Underwater</topic><topic>underwater solar energy harvesting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renuka, H.</creatorcontrib><creatorcontrib>Enaganti, Prasanth K.</creatorcontrib><creatorcontrib>Venkataraman, B. Harihara</creatorcontrib><creatorcontrib>Ramaswamy, Kannan</creatorcontrib><creatorcontrib>Kundu, Souvik</creatorcontrib><creatorcontrib>Goel, Sanket</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renuka, H.</au><au>Enaganti, Prasanth K.</au><au>Venkataraman, B. Harihara</au><au>Ramaswamy, Kannan</au><au>Kundu, Souvik</au><au>Goel, Sanket</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submerged solar energy harvesting using ferroelectric Ti‐doped BFO‐based heterojunction solar cells</atitle><jtitle>International journal of energy research</jtitle><date>2021-11</date><risdate>2021</risdate><volume>45</volume><issue>14</issue><spage>20400</spage><epage>20412</epage><pages>20400-20412</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
Herein, ferroelectric Ti‐doped BiFeO3 (BFTO) heterojunction photovoltaic (PV) cells are realized for underwater PV applications. In the heterostructure, NiO functions as a transparent wide‐bandgap (3.2 eV) hole transport layer (HTL), whereas BFTO is the visible energy harvester and the highly conductive WS2 behaves as the electron transport layer (ETL). The multijunction PV device with a cell area of 1cm2 revealed a current density (JSC) and an open‐circuit voltage (VOC) of 1.90 mA/cm2 and 1.20 V, respectively, under ambient conditions (before submerging into water). Subsequently, the polydimethylsiloxane (PDMS)‐encapsulated Ag/NiO/BFTO/WS2/ITO PV device was investigated for underwater solar energy harvesting in a shallow tank. For a comparative analysis, the mono‐junction NiO/BFTO and BFTO/WS2 PVs were also evaluated. The results indicated a steady decrease in the efficacy and power density of the cell with depth, and the heterojunction PV has outperformed the single‐junction PVs. As there are spectral variations with increase in depth, the heterostructure seem to have the potential to absorb the overall spectrum as NiO being transparent transmits high energy UV radiations into the device, while BFTO and WS2 layers absorb the visible and NIR spectrum. Therefore, the device though submerged can capture the solar energy efficiently with minimal losses in terms of spectrum and function efficiently. These results establish that the ferroelectric nano‐heterostructured PV devices can be utilized as a power generating source for various low‐power marine‐based sensing applications.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.7125</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9739-4178</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2021-11, Vol.45 (14), p.20400-20412 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2583338890 |
source | Wiley Online Library All Journals |
subjects | Bismuth compounds Circuits Comparative analysis Current density Electron transport electron transport layer electron‐hole recombination Energy Energy harvesting Ferroelectric materials Ferroelectricity heterojunction Heterojunctions Heterostructures hole transport layer Nickel oxides Photovoltaic cells Photovoltaics Polydimethylsiloxane Solar cells Solar energy Transport Underwater underwater solar energy harvesting |
title | Submerged solar energy harvesting using ferroelectric Ti‐doped BFO‐based heterojunction solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submerged%20solar%20energy%20harvesting%20using%20ferroelectric%20Ti%E2%80%90doped%20BFO%E2%80%90based%20heterojunction%20solar%20cells&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Renuka,%20H.&rft.date=2021-11&rft.volume=45&rft.issue=14&rft.spage=20400&rft.epage=20412&rft.pages=20400-20412&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.7125&rft_dat=%3Cproquest_cross%3E2583338890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583338890&rft_id=info:pmid/&rfr_iscdi=true |