Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation

Summary In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2021-11, Vol.45 (14), p.20156-20175
Hauptverfasser: Choudhari, Manoj S., Sharma, Vinod Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20175
container_issue 14
container_start_page 20156
container_title International journal of energy research
container_volume 45
creator Choudhari, Manoj S.
Sharma, Vinod Kumar
description Summary In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes. The performance of H‐TCES is investigated through the CFD approach. The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used. The system possesses an energy storage density of 243.67 kJ with a COP of 0.48.
doi_str_mv 10.1002/er.7093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583338889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583338889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</originalsourceid><addsrcrecordid>eNp1kN9KwzAYxYMoOKf4CgEvvJDOpOna5lLG_AMDRRR2V9L0a5vRJjNpJ73zBQSf0Scx2_TSq4_D9-MczkHonJIJJSS8BjtJCGcHaEQJ5wGl0fIQjQiLWcBJsjxGJ86tCPE_mozQ5xPY0thWaAlY6Q24TlWiU0Y7bDSuh8KaCvT3x1cuHBS4q8G2RtbQKikaDBpsNWDXGSsqwG5wHbQesqavalwqrTrAG9P0LeAWutoUWOg_l2LQwttgp9q-2WWeoqNSNA7Ofu8Yvd7OX2b3weLx7mF2swgkC0Pfg8ZxLEsuEpknMmKCyARkykXJipxTSZJpwfOCQO5lWLCIT0Wc8jLKQ5FSKtgYXex919a89b5ztjK91T4yC6cpYyxNU-6pyz0lrXHOQpmtrWqFHTJKsu3WGdhsu7Unr_bku2pg-A_L5s87-gefHIUr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583338889</pqid></control><display><type>article</type><title>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</title><source>Access via Wiley Online Library</source><creator>Choudhari, Manoj S. ; Sharma, Vinod Kumar</creator><creatorcontrib>Choudhari, Manoj S. ; Sharma, Vinod Kumar</creatorcontrib><description>Summary In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes. The performance of H‐TCES is investigated through the CFD approach. The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used. The system possesses an energy storage density of 243.67 kJ with a COP of 0.48.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.7093</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Computational fluid dynamics ; Computer applications ; Cycle time ; Energy ; Energy storage ; Finite volume method ; Fluid dynamics ; Heat ; Heat storage ; heat transfer ; Hydrodynamics ; Hydrogen storage ; Hydrogen-based energy ; hydrogen‐based thermochemical energy storage ; Isotherms ; Mass transfer ; Mathematical models ; Metal hydrides ; Metals ; Performance prediction ; pressure‐concentration isotherms ; Regeneration ; Simulation</subject><ispartof>International journal of energy research, 2021-11, Vol.45 (14), p.20156-20175</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</citedby><cites>FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</cites><orcidid>0000-0002-5203-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.7093$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.7093$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Choudhari, Manoj S.</creatorcontrib><creatorcontrib>Sharma, Vinod Kumar</creatorcontrib><title>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</title><title>International journal of energy research</title><description>Summary In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes. The performance of H‐TCES is investigated through the CFD approach. The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used. The system possesses an energy storage density of 243.67 kJ with a COP of 0.48.</description><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Cycle time</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Heat</subject><subject>Heat storage</subject><subject>heat transfer</subject><subject>Hydrodynamics</subject><subject>Hydrogen storage</subject><subject>Hydrogen-based energy</subject><subject>hydrogen‐based thermochemical energy storage</subject><subject>Isotherms</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Metal hydrides</subject><subject>Metals</subject><subject>Performance prediction</subject><subject>pressure‐concentration isotherms</subject><subject>Regeneration</subject><subject>Simulation</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAYxYMoOKf4CgEvvJDOpOna5lLG_AMDRRR2V9L0a5vRJjNpJ73zBQSf0Scx2_TSq4_D9-MczkHonJIJJSS8BjtJCGcHaEQJ5wGl0fIQjQiLWcBJsjxGJ86tCPE_mozQ5xPY0thWaAlY6Q24TlWiU0Y7bDSuh8KaCvT3x1cuHBS4q8G2RtbQKikaDBpsNWDXGSsqwG5wHbQesqavalwqrTrAG9P0LeAWutoUWOg_l2LQwttgp9q-2WWeoqNSNA7Ofu8Yvd7OX2b3weLx7mF2swgkC0Pfg8ZxLEsuEpknMmKCyARkykXJipxTSZJpwfOCQO5lWLCIT0Wc8jLKQ5FSKtgYXex919a89b5ztjK91T4yC6cpYyxNU-6pyz0lrXHOQpmtrWqFHTJKsu3WGdhsu7Unr_bku2pg-A_L5s87-gefHIUr</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Choudhari, Manoj S.</creator><creator>Sharma, Vinod Kumar</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5203-1218</orcidid></search><sort><creationdate>202111</creationdate><title>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</title><author>Choudhari, Manoj S. ; Sharma, Vinod Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Cycle time</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Heat</topic><topic>Heat storage</topic><topic>heat transfer</topic><topic>Hydrodynamics</topic><topic>Hydrogen storage</topic><topic>Hydrogen-based energy</topic><topic>hydrogen‐based thermochemical energy storage</topic><topic>Isotherms</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Metal hydrides</topic><topic>Metals</topic><topic>Performance prediction</topic><topic>pressure‐concentration isotherms</topic><topic>Regeneration</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhari, Manoj S.</creatorcontrib><creatorcontrib>Sharma, Vinod Kumar</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhari, Manoj S.</au><au>Sharma, Vinod Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</atitle><jtitle>International journal of energy research</jtitle><date>2021-11</date><risdate>2021</risdate><volume>45</volume><issue>14</issue><spage>20156</spage><epage>20175</epage><pages>20156-20175</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes. The performance of H‐TCES is investigated through the CFD approach. The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used. The system possesses an energy storage density of 243.67 kJ with a COP of 0.48.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.7093</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5203-1218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2021-11, Vol.45 (14), p.20156-20175
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2583338889
source Access via Wiley Online Library
subjects Computational fluid dynamics
Computer applications
Cycle time
Energy
Energy storage
Finite volume method
Fluid dynamics
Heat
Heat storage
heat transfer
Hydrodynamics
Hydrogen storage
Hydrogen-based energy
hydrogen‐based thermochemical energy storage
Isotherms
Mass transfer
Mathematical models
Metal hydrides
Metals
Performance prediction
pressure‐concentration isotherms
Regeneration
Simulation
title Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20investigations%20on%20hydrogen%E2%80%90based%20thermochemical%20energy%20storage%20system%20through%20finite%20volume%20method%20and%20thermodynamic%20simulation&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Choudhari,%20Manoj%20S.&rft.date=2021-11&rft.volume=45&rft.issue=14&rft.spage=20156&rft.epage=20175&rft.pages=20156-20175&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.7093&rft_dat=%3Cproquest_cross%3E2583338889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583338889&rft_id=info:pmid/&rfr_iscdi=true