Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation
Summary In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair....
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2021-11, Vol.45 (14), p.20156-20175 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20175 |
---|---|
container_issue | 14 |
container_start_page | 20156 |
container_title | International journal of energy research |
container_volume | 45 |
creator | Choudhari, Manoj S. Sharma, Vinod Kumar |
description | Summary
In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes.
The performance of H‐TCES is investigated through the CFD approach.
The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used.
The system possesses an energy storage density of 243.67 kJ with a COP of 0.48. |
doi_str_mv | 10.1002/er.7093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583338889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583338889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</originalsourceid><addsrcrecordid>eNp1kN9KwzAYxYMoOKf4CgEvvJDOpOna5lLG_AMDRRR2V9L0a5vRJjNpJ73zBQSf0Scx2_TSq4_D9-MczkHonJIJJSS8BjtJCGcHaEQJ5wGl0fIQjQiLWcBJsjxGJ86tCPE_mozQ5xPY0thWaAlY6Q24TlWiU0Y7bDSuh8KaCvT3x1cuHBS4q8G2RtbQKikaDBpsNWDXGSsqwG5wHbQesqavalwqrTrAG9P0LeAWutoUWOg_l2LQwttgp9q-2WWeoqNSNA7Ofu8Yvd7OX2b3weLx7mF2swgkC0Pfg8ZxLEsuEpknMmKCyARkykXJipxTSZJpwfOCQO5lWLCIT0Wc8jLKQ5FSKtgYXex919a89b5ztjK91T4yC6cpYyxNU-6pyz0lrXHOQpmtrWqFHTJKsu3WGdhsu7Unr_bku2pg-A_L5s87-gefHIUr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583338889</pqid></control><display><type>article</type><title>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</title><source>Access via Wiley Online Library</source><creator>Choudhari, Manoj S. ; Sharma, Vinod Kumar</creator><creatorcontrib>Choudhari, Manoj S. ; Sharma, Vinod Kumar</creatorcontrib><description>Summary
In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes.
The performance of H‐TCES is investigated through the CFD approach.
The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used.
The system possesses an energy storage density of 243.67 kJ with a COP of 0.48.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.7093</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Computational fluid dynamics ; Computer applications ; Cycle time ; Energy ; Energy storage ; Finite volume method ; Fluid dynamics ; Heat ; Heat storage ; heat transfer ; Hydrodynamics ; Hydrogen storage ; Hydrogen-based energy ; hydrogen‐based thermochemical energy storage ; Isotherms ; Mass transfer ; Mathematical models ; Metal hydrides ; Metals ; Performance prediction ; pressure‐concentration isotherms ; Regeneration ; Simulation</subject><ispartof>International journal of energy research, 2021-11, Vol.45 (14), p.20156-20175</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</citedby><cites>FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</cites><orcidid>0000-0002-5203-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.7093$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.7093$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Choudhari, Manoj S.</creatorcontrib><creatorcontrib>Sharma, Vinod Kumar</creatorcontrib><title>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</title><title>International journal of energy research</title><description>Summary
In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes.
The performance of H‐TCES is investigated through the CFD approach.
The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used.
The system possesses an energy storage density of 243.67 kJ with a COP of 0.48.</description><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Cycle time</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Heat</subject><subject>Heat storage</subject><subject>heat transfer</subject><subject>Hydrodynamics</subject><subject>Hydrogen storage</subject><subject>Hydrogen-based energy</subject><subject>hydrogen‐based thermochemical energy storage</subject><subject>Isotherms</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Metal hydrides</subject><subject>Metals</subject><subject>Performance prediction</subject><subject>pressure‐concentration isotherms</subject><subject>Regeneration</subject><subject>Simulation</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAYxYMoOKf4CgEvvJDOpOna5lLG_AMDRRR2V9L0a5vRJjNpJ73zBQSf0Scx2_TSq4_D9-MczkHonJIJJSS8BjtJCGcHaEQJ5wGl0fIQjQiLWcBJsjxGJ86tCPE_mozQ5xPY0thWaAlY6Q24TlWiU0Y7bDSuh8KaCvT3x1cuHBS4q8G2RtbQKikaDBpsNWDXGSsqwG5wHbQesqavalwqrTrAG9P0LeAWutoUWOg_l2LQwttgp9q-2WWeoqNSNA7Ofu8Yvd7OX2b3weLx7mF2swgkC0Pfg8ZxLEsuEpknMmKCyARkykXJipxTSZJpwfOCQO5lWLCIT0Wc8jLKQ5FSKtgYXex919a89b5ztjK91T4yC6cpYyxNU-6pyz0lrXHOQpmtrWqFHTJKsu3WGdhsu7Unr_bku2pg-A_L5s87-gefHIUr</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Choudhari, Manoj S.</creator><creator>Sharma, Vinod Kumar</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5203-1218</orcidid></search><sort><creationdate>202111</creationdate><title>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</title><author>Choudhari, Manoj S. ; Sharma, Vinod Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3223-91666cf9a7cb7c43a0c7ec89af3db91c075d9bd0ebdb92d3495a689f4b2a811a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Cycle time</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Heat</topic><topic>Heat storage</topic><topic>heat transfer</topic><topic>Hydrodynamics</topic><topic>Hydrogen storage</topic><topic>Hydrogen-based energy</topic><topic>hydrogen‐based thermochemical energy storage</topic><topic>Isotherms</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Metal hydrides</topic><topic>Metals</topic><topic>Performance prediction</topic><topic>pressure‐concentration isotherms</topic><topic>Regeneration</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhari, Manoj S.</creatorcontrib><creatorcontrib>Sharma, Vinod Kumar</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhari, Manoj S.</au><au>Sharma, Vinod Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation</atitle><jtitle>International journal of energy research</jtitle><date>2021-11</date><risdate>2021</risdate><volume>45</volume><issue>14</issue><spage>20156</spage><epage>20175</epage><pages>20156-20175</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
In the present work, thermodynamic simulation and numerical modelling (through a finite volume approach) are carried out to investigate the performance of hydrogen‐based thermochemical energy storage (H‐TCES) system with the application of LaNi4.6Al0.4‐La0.9Ce0.1Ni5 metal hydride (MH) pair. Thermodynamic equations are used to evaluate the H‐TCES performance whereas the continuity, energy and pressure equations are solved with the help of the computational fluid dynamics (CFD) approach to predict the heat and mass transfer behaviour of MH beds. The numerical code is validated by comparing the predicted pressure concentration isotherms (PCIs) with the experimentally measured PCIs, which are observed to be in good agreement. The experimental PCI data are used for the performance prediction of H‐TCES system operating at 25°C, 100°C, 130°C and 150°C as ambient‐, regeneration‐, storage‐ and output temperature respectively. It is found that the energy storage density of the H‐TCES system is 243.67 kJ with a COP of 0.48. The overall cycle time is predicted as 2200 seconds, which includes heat storage, heat output, sensible heating and sensible cooling processes. The generated temperature contours illustrate the effect of an increase and decrease in bed temperature during absorption and desorption processes.
The performance of H‐TCES is investigated through the CFD approach.
The pair of La0.9Ce01Ni5 and LaNi4.6Al0.4 is used.
The system possesses an energy storage density of 243.67 kJ with a COP of 0.48.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.7093</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5203-1218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2021-11, Vol.45 (14), p.20156-20175 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2583338889 |
source | Access via Wiley Online Library |
subjects | Computational fluid dynamics Computer applications Cycle time Energy Energy storage Finite volume method Fluid dynamics Heat Heat storage heat transfer Hydrodynamics Hydrogen storage Hydrogen-based energy hydrogen‐based thermochemical energy storage Isotherms Mass transfer Mathematical models Metal hydrides Metals Performance prediction pressure‐concentration isotherms Regeneration Simulation |
title | Performance investigations on hydrogen‐based thermochemical energy storage system through finite volume method and thermodynamic simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20investigations%20on%20hydrogen%E2%80%90based%20thermochemical%20energy%20storage%20system%20through%20finite%20volume%20method%20and%20thermodynamic%20simulation&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Choudhari,%20Manoj%20S.&rft.date=2021-11&rft.volume=45&rft.issue=14&rft.spage=20156&rft.epage=20175&rft.pages=20156-20175&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.7093&rft_dat=%3Cproquest_cross%3E2583338889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583338889&rft_id=info:pmid/&rfr_iscdi=true |